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Summary

Single Point Incremental Forming (SPIF) is a displacementrolled process performed
on a CNC machine. A clamped blank is incrementally deformgthle movement of a
small-sized tool that follows a prescribed lengthy toolhpafhe strain achieved by the
SPIF process is higher than the strain achieved by clasgioaing processes e.g. deep
drawing. This motivated many researchers for the last tweades studying the process
mechanics and still a definite explanation is missing. Thiefelement method is a powerful
tool in studying the forming processes. Compared to e.gp deawing, the FE model for
SPIF is very simple. However, simulation of the process ihallenging task because
of the enormous computing time as a result of performing saods of load increments
on a relatively fine FE model. This limits the use of the finiteneent method to simple
academic cases that already require weeks of computing Tilmefocus of this thesis is to
efficiently use the implicit time integration method in ortéiedrastically reduce the required
computing time for incremental forming simulation.

Because of the localised plastic deformation, the partoFta mesh thatis in the vicinity
of the tool experiences a strong nonlinearity. The stronglinearity is a combination
of the material and geometrical nonlinearities. The reshef FE mesh that models the
elastically deforming part of the blank experiences onlyealwgeometrical nonlinearity.
Using the standard Newton method is required because ofrtiregmnonlinearities in the set
of equations, but it is an expensive update procedure asdhiéfficiently used for the large
elastically deforming part. Therefore, it becomes neagssahave a different treatment
that is accurate and computationally efficient for diffanparts of the FE mesh. The fully
Newton nonlinear treatment is used for the localised pladtformation. The rest of the
FE mesh that is elastically deforming is treated by a psdum@r approach. The pseudo-
linear treatment applies a nonlinear geometrical and rizitgrdate for the tangent stiffness
matrix and the internal force vector only once every incratri@ number of increments.
Within the increment(s), the tangent stiffness matrix issed, as in the modified Newton
method. The internal force vector is linearly updated byrthdtiplication of the tangent
stiffness matrix and the incremental displacement vectbis a relatively cheap update
procedure compared to the Newton method.

The partitioning of the FE mesh into domains with differeptlate strategies (iteratively,
incrementally and multi-incrementally) can be done by savindicators. Here, three
indicators are developed for incremental sheet formingdieoto generically classify these
domains. These indicators are the current tool locaticastd deformation in the previous
load increment and the shape change in the previous loaehmatt. The tool indicator and
the plastic history indicator are suitable to classify themesh into the iterative and the
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incremental update strategies. The geometrical indiégatosed to determine the needs of
updating a multi-incremental domain.

An analytical formula is derived for SPEED which measures flerformance of the
efficient implicit method in speeding up the standard imp&gnulation of an incremental
forming process. Itis defined as the CPU time cost of one Neimtyement to the cost of one
increment of the efficient implicit method. SPEED depends®reral factors: the number
of the iterations used per increment, the used update gieatehe size of the domains and
the cost of major parts of the Newton iteration (building slystem of equations, solving it
and updating the stresses). For a simple material model@itelélement type, the efficient
implicit method can accelerate a SPIF simulation with rgggle iterative zone size and
negligible solving cost by a factor approximately equahie humber of the iterations used
per increment. Furthermore, the advantage of adaptiveerai#mt is combined with the
efficient implicit method resulting in an additional acaalgon of the implicit simulation
of a SPIF process.

In addition, this thesis presents a fundamental study omtecpkar aspect of the process
mechanics involved in the SPIF process. The study is caotiedn the continuous bending
under tension (CBT) process. It has the advantage of redtle@3-dimensional complex
bending in the SPIF process to a merely 2-dimensional casis.shown that combined
bending and tension can stabilize the deformation of a sirig high level of strain. An
increase of the force is required to introduce additiorathkst deformation. This condition
requires that the averaged tangent stiffness has to be ldrge the averaged stress. The
presence of compressive stress reduces the average shiéssha elastic fibers increase
the average tangent stiffness of the cross section. Bertirmgluces both the compressed
fibers and the elastically loaded fibers. A further analysisdrried out on the achieved
cyclic force—displacement curve of the CBT test. The cydesists of two parts: steady
and transient. The part having a steady level of force remtsshe deformation of the strip
governed by significant curvature change of the strip bexafi®ending. The transient
increase of the force results from the deformation of thip $ly increasing the tension force
with no significant change in strip curvature.
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“Single Point Incremental Forming” (SPIF) is een verplaagestuurd proces dat uitge-
voerd wordt op een CNC machine. Een ingeklemde plaat womtementeel vervormd
door de beweging van een klein gereedschap dat een voorgesnipad volgt. De rekken
die bij het SPIF proces behaald worden zijn hoger dan de re#tleebij reguliere omvorm
processen zoals dieptrekken behaald worden. Gedurendigalefen twee decennia moti-
veerde dit veel onderzoekers om de achterliggende procdsaniza te bestuderen, hoewel
een sluitende verklaring nog steeds ontbreekt. De eineligeentenmethode is een krach-
tig hulpmiddel in het bestuderen van omvormprocessen. elekgn met bijvoorbeeld het
dieptrek proces, is een eindig-elementenmodel voor heff Rices relatief eenvoudig.
Echter, simulatie van het proces is een uitdagende taakagade benodigde lange reken-
tijden. Als gevolg van het uitvoeren van duizenden belggticrementen op een relatief
fijn eindige-elementenmodel neemt de rekentijd snel tod.bBperkt het gebruik van de
eindige-elementenmethode tot enkele vereenvoudigdeatadhe gevallen die overigens
ook al weken aan rekentijd vereisen. De focus van dit werletseffficiént toepassen van
de impliciete tijdintegratiemethode om de vereiste reffgnbor simulaties van het incre-
menteel omvormproces te verkorten.

Vanwege de lokale plastische deformatie ondervindt eeivdaéet eindige-elementennet
in de buurt van het gereedschap een sterke niet-lineafeite niet-lineariteit is een com-
binatie van materiaal- en geometrische niet-lineariteitéet overige deel van het eindige-
elementennet dat het elastisch vervormde deel van de plad¢lfeert, ondervindt alleen
een zwakke geometrische niet-lineariteit. Het gebruikd@standaard Newton methode is
noodzakelijk vanwege de sterke niet-lineariteit in de sat vergelijkingen. Het is echter
een kostbare procedure en bovendien inefficiént in gebnk ket elastisch vervormende
deel. Een alternatieve aanpak is daarom noodzakelijk dielzoauwkeurig als efficiént is
met betrekking tot de rekentijd voor verschillende delen kat eindige-elementennet.

De volledige niet-lineaire Newton benadering is gebruikdwvde lokale plastische de-
formatie. Het resterende deel van het eindige-elementgwatelastisch vervormd wordt,
is behandeld met behulp van een pseudo niet-lineaire bengd®e pseudo niet-lineaire
benadering past slechts éénmaal per increment, of overaggal ancrementen, een niet-
lineaire geometrische en materiaal correctie toe voor dgdati€le stijfheidsmatrix en de
interne krachtvector. De tangentiéle stijfheidsmatrixréichergebruikt in het increment
zoals ook toegepast wordt in de gemodificeerde Newton methad interne krachtvector
wordt lineair geupdate door de vermenigvuldiging van dgéantiéle stijfheidsmatrix en de
incrementele verplaatsingsvector. Dit resulteert in edatief efficiénte correctie procedure
in vergelijking met de Newton methode.
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De opdeling van het eindige-elementennet in domeinen mschi#lende correctie
strategieén (iteratief, incrementeel en multi-increreetjtkan gedaan worden met behulp
van verschillende indicatoren. Drie indicatoren zijn oikieeld voor incrementeel plaat-
omvormen om de domeinen in algemene zin te definiéren. Deimsitoren zijn gebaseerd
op de huidige locatie van het gereedschap, de plastischendatie in het vorige belasting-
increment en de vormverandering in het vorige belastimgiment. De positie-indicator en
de plastische-geschiedenis-indicator zijn geschikt otrehelige-elementennet in de ite-
ratieve en incrementele update strategie te classificddergeometrische indicator wordt
gebruikt om te bepalen of een correctie in een multi-incret@el domein noodzakelijk is.

Een analytische formule is ontwikkeld voor SPEED wat de tatésvan de efficiénte
impliciete methode meet in het versnellen van de standaaptidiete simulatie van een
incrementeel omvormproces. Het is gedefinieerd als de welihg van de CPU tijd van
een Newton increment en een increment van de efficiénte d¢ietdi methode. SPEED
is afhankelijk van verschillende factoren: aantal benddijeraties per increment, toege-
paste correctie strategie, domeingrootte en kosten vaodibnderdelen van de Newton
iteratie (opstellen van het stelsel van vergelijkingerpsgen en bepaling van de spannin-
gen). Voor een simpel materiaalmodel en eindige-elempeattan de efficiénte impliciete
methode een SPIF simulatie, met een verwaarloosbhareiéezatone en verwaarloosba-
re oplossingskosten, versnellen met een factor ongevdige gan het aantal te gebruiken
iteraties per increment. Bovendien wordt adaptieve el¢amret verfijning gecombineerd
met de efficiénte impliciete methode, resulterend in eeraesdrsnelling van de impliciete
simulatie van het SPIF proces.

Daarnaast wordt in dit proefschrift een fundamentele stgéipresenteerd van een spe-
cifiek aspect van de procesmechanica die plaatsvindt in Bt Broces. Deze studie is
uitgevoerd op een proces waarbij continu gebogen wordtminelebelasting (Continuous
Bending under Tension, CBT). Dit heeft het voordeel dat hdtn3ensionale complexe
buiggedrag in het SPIF proces gereduceerd wordt tot eem2sdiionaal probleem. Het is
aangetoond dat het gecombineerd buigen en trekken de deferman een strip tot hoge
rekniveaus kan stabiliseren. Voor een constante buigsddiaen toename van de kracht
noodzakelijk om een stabiele deformatie te introducerezdzonditie vereist dat de gemid-
delde tangentiéle stijtheid groter moet zijn dan de genlilepanning. De aanwezigheid
van drukspanningen vermindert de gemiddelde spanningijlteie elasticiteit de gemid-
delde tangentiéle stijfheid van de dwarsdoorsnede doeetoen. Buiging introduceert
zowel vezels belast op druk als elastisch belaste vezelsvé&rgere analyse is uitgevoerd
op de behaalde cyclische kracht-verplaatsingscurve va@Rietest. De cyclus bestaat
uit twee delen, respectievelijk met een stabiel krachtmiven een krachtpiek. Het deel
dat een stabiel krachtniveau ondergaat representeerfoetie van de strip veroorzaakt
door een significante verandering van de kromming van de alsigevolg van buiging. De
transiente toename van de kracht resulteert uit de defeva de strip als gevolg van de
trekkracht toename zonder significante verandering varudgddius.
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1. Introduction

In ancient times, if you were a knight looking to buy new cheshor you would search
for a skilled blacksmith. Our skilled blacksmith used higrtmaer, among many simple
tools, and he shaped an initially flat sheet into chest arfRocusing on the procedure of
producing the armor, it can be imagined that the blacksmilirstart by warming the sheet
then start hammering it; then he may use a rod with a rounatipdate a proper curvature
that matches the chest shape of the knight. If the knight fardamore coins perhaps the
blacksmith will offer more fancy details and create a unighest armor. In this case, the
blacksmith definitely will leave a remarkable fingerprints@rybody will know who is the
father of this unique piece. Sadly, neither the blacksmiththe knight were interested in
simulating the incremental forming of the sheet into a chestor using simple tools or in
studying the fundamental mechanics of the process.

1.1 Incremental sheet forming

Incremental forming is a common characteristic of severatesses like ring rolling, spin-
ning and asymmetric incremental sheet forming AISF. In¢h@®cesses, a forming tool
deforms a workpiece to the required geometry by a sequersraalf and localized plastic
deformation. Regardless of the size of the tool, the formtamy has a small contact area
with the workpiece. During the process, the contact arean(ftg tool) travels all over the
workpiece several times in loops or revolutions. Withinlthap, a portion of the workpiece
deforms plastically for a small time interval compared te total process time. After each
loop, the initial geometry is gradually changed toward theickd final geometry.

The process time becomes even longer when the small coméacthanges from line-
like (rolling) to point-like (asymmetric incremental sliderming). Asymmetric incremen-
tal sheet forming appears in several configurations. Thelsishis single pointincremental
forming (SPIF) where a clamped sheet is deformed by a sniadirépal shaped tool mounted
on a CNC machine (Isekat al,, 1989). The basic idea was introduced by Mason (1978).
Two point incremental forming (TPIF) has the same configareds SPIF but it uses a par-
tial or full die to produce more diffcult details (Matsubal®94). Kinematic incremental
sheet forming (KISF) uses another moving forming tool iadtef the fixed die in TPIF
(Meieret al, 2007; Maidagaet al., 2007).

It is known from the literature that the AISF process is fanadle for prototyping and
small batch production. Itis a very flexible process; chagdhe followed tool path results
in producing new geometry (product). Products that weresssfully produced by AISF
include a headlight (Jeswiet and Hagan, 2001), a stiffelmiage (Hirtet al., 2005), an ankle
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support (Ambrogicet al., 2005a) and a cranial implant (Duflet al,, 2005). An extensive
overview of the asymmetric incremental sheet forming psst¢gs been presented by Jeswiet
et al. (2005); Bambach (2008); Emmessal. (2010). A high strain can be achieved in
the incremental sheet forming process compared to theadhle@strain in a deep drawing
process. Several mechanisms that might explain the inedefasmability are proposed in
the literature (for an overview of proposed mechanisms semEns and van den Boogaard
(2009b)), but a definite explanation is still missing. Noagsl the finite element method
(FEM) is a powerful tool in studying and investigating mdtaiming processes. It provides
insight details for the material during the forming procesehe simplicity of the SPIF
process in real-life makes it easy to create a FEM model fsqttocess. The forming tool
can be modeled by an analytical sphere, a discretized noahbtank models the workpiece
and suppressing the edges of the blank models the procesddmgiconditions. Finally,
prescribing the displacements of the numerical sphere mdlde displacement—controlled
process.

Still, simulating the SPIF process by FEM is a major chaleenBecause of the small
contact area, a relatively fine mesh is used to discretizevtitgpiece in finite elements.
Also, thousands of load increments are used to model theHisaoky. The standard use
of the well-known integration schemes (the explicit andithplicit) requires tremendous
calculation times. For a small and simple academic casey,sthid calculation time can
extend to weeks using a modern computer. The explicit tiregiation scheme has options
that reduce the computing time significantly but the achderesults are not satisfactory. The
implicit time integration scheme is accurate but it is cotapionally expensive. Because
of accuracy, current research focuses on an efficient imghtation of an implicit time
integration scheme, dedicated to incremental sheet fgrmin

1.2 Objective and outline

The main objective of the work presented in this thesis isrtiukate the incremental sheet
forming process efficiently: accurate and fast. A methodrigppsed based on the im-
plicit time integration scheme. Basically, the proposethud has to maintain the achieved
accuracy by the implicit time integration scheme and to oedts computational cost signif-

icantly. The proposed method is validated by simulatingraaiestrative case study of SPIF.
Additionally in this thesis, a fundamental study on the psscmechanics of a particular
type of incremental sheet forming is introduced, namelybiieding under tension process.

Outline

A major part of this thesis focuses on simulating incremisttaet forming efficiently. The
efficient simulation story starts in Chapter 2. A basic stadyhe evolution of nonlinearity
in the sheet deformed by the SPIF process reveals that dsedadtrong nonlinearity is
observed in the system of equations for the degree of freedbat are currently located
in the localised plastic deformation zone in the vicinitytbé forming tool. This strong
nonlinearity requires the iterative procedure of the imipliime integration scheme. The
major part of the system of equations experience only a weaknearity and it does not
require the expensive iterative procedure. This sheds tighlihe fact that the standard use
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of the implicit time integration scheme in SPIF is ineffidi@rth respect to the computing
time. Therefore, a mixed treatment within the implicit time&gration scheme is developed
to treat each part as efficiently as it requires.

After the basic chaptekspects of SPIF modellingeaders with different interests have
more elective choices. These choices focus on differenessthe implementation of
the method, the applicability of the method to other incratakforming processes and the
flexibility of the method to be integrated with other numatiechniques. Beinginterestedin
the implementation of the efficient implicit method in a stard implicit scheme, Chapter 3
is the chapter to read. A super element based implementatiatroduced there. Three
differentindicators are used to classify the super elefmmifferent treatments during the
incremental procedure. These indicators are developeth&EPIF process and they are
based on the currenttool location, the plastic deformatidhe previous increment and the
change in shape.

If the applicability of the efficient implicit method for ot incremental forming pro-
cesses is your interest, you can read Chapter 4 after the tlaapter. The computational
benefit of the efficient implicit method is measured by a spagfhctor. An analytical for-
mula is introduced to predict in advance the expected spgddctor that can be achieved
by the efficient implicit method for a particular incremenfiarming simulation. Before
implementing a single line of programing code, you can debidsed on the outcome of
this formula if it is (not) worth implementing the efficiemhplicit method.

The majorinterest of a developer is the flexibility of the hd to be combined with other
numerical techniques in order to enhance the computatperddrmance of the method.
Two numerical techniques are discussed in Chapter 5. Thedanique is the static con-
densation. Itis implemented into the efficient implicit imed. A study on the performance
of the enhanced method is presented. The second technigukajidive remeshing that
shows a high potential to enhance the performance of thdaiion. A study on remeshing
for the SPIF process is presented also in that chapter.

Two real-life incremental forming processes are simuldtgdthe efficient implicit
method in Chapter 6. The first application is to simulate thedpction of a pyramidal
shape by the SPIF process. The second application is thdasiomuiof multi-point incre-
mental forming of a strip by a roll set.

Additional to the numerical part in this thesis, a fundanaéstudy on the process
mechanics of a particular SPIF process is introduced in @nap The study is carried
out on a strip which is deformed by continuous bending unelesibn. This deformation
mode has similarities with the deformation that takes piacthe SPIF process. Based
on a relatively simple material model, the achieved cyadicé—displacement curve of the
process is explained. A numerically derived stabilityemiibn is introduced that sheds light
on the importance of bending in stabilizing the forming ms& Finally, the conclusions
from this research are summarized in Chapter 8.






2. Aspects of SPIF modelling

Single Point Incremental Forming (SPIF) is a challengingcpss to simulate. The sim-
ulation challenge is introduced in forming a blank using aBrforming tool. The tool
has to travel all over the blank in a lengthy forming path Hitsg in a slow process and
tremendous simulation computing time. This chapter fosusethe numerical challenge
that is summarized in simulating thousands of incrementa felatively fine FE mesh. A
brief overview on the most used numerical schemes: explictimplicit time integration is
givenin Section 2.1. A decisionis made in favor of the imipficocedure, therefore implicit
simulation of SPIF is studied in Section 2.2. In particutlae influence of localised plastic
deformation on the numerical nonlinearities that are idtrced in the load increments is
studied. Based on that, efficient approaches are introdaaader to reduce the incremen-
tal cost of the standard Newton method. These approachésamxed Newton—modified
Newton (NmN) approach and the coupled plastic with pseimat elastic approaches: the
two domain and the three domain, described in Section 2.3

2.1 SPIF modelling

Single Point Incremental Forming (SPIF) is a displacementrolled process performed
on a CNC machine. A clamped blank is deformed by the movenféhedool that follows
a prescribed tool path (Isekt al, 1989), a sketch of SPIF is presented in Figure 2.1. An
extensive overview of the process has been given by Jeswédt(2005); Emmenst al.
(2010). The tool size plays a crucial role in the SPIF proéesboth the physical process
and the numerical simulation. The small radius of the fognool concentrates the strain at
the zone of deformation in the sheet under the forming tobk fbol has to travel a lengthy
forming path all over the blank to introduce the deformatiesulting in a slow process in
real life. The deformation in SPIF is classified as localigkdtic deformation (Hiret al,
2002). According to this hypothesis, plastic deformat®focalised in a small zone in the
region of the forming tool surrounded by elastic deformatid the rest of the blank. The
final geometry of the product is achieved by moving the locairing zone all over the
blank in a lengthy toolpath. As the tool moves, a small partbthe material is plastically
deformed and the material portion that just had been defdsteats to springback. This
causes a simultaneous localised springbackin the viahitye tool (Bambackt al., 2009).
Numerically, SPIF requires enormous computing time relgasiof the type of the solu-
tion procedures (explicit or implicit) for two reasons. $tiof all, modelling the sequence of
small deformation increments requires thousands of nurakricrements to be performed.
Using too large numerical increments results in simulatingrge number of penetrations
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Clamping tool

o

Forming tool

Figure 2.1: SPIF process sketch.

instead of continuous incremental forming. Secondly, thalkcontact area between the
forming tool and the blank requires a fine FE mesh to captweérttioduced deformation
by the small radius of the tool. Because of the large numbeauaierical increments for
the relatively fine FE mesh, the overall computing time fotFS§imulation is much larger
than e.g. for deep drawing simulation.

2.1.1 SPIF: explicit or implicit

Both solution procedures, the explicit and the implicitéimtegration algorithms are avail-
able in commercial FE codes. The dynamic explicit algorithiat is based on the central
difference scheme is the most used in practice. Using a daged mass matrix, the ex-
plicit algorithm does not need to solve a coupled system afgqgns. Instead the nodal
displacement and the nodal velocity are easily updated &aisequations. No unbalance
force is checked because the difference between the ihtrdahe external force is used to
determine the nodal acceleration, the velocity and thedig@acement. For these reasons,
the dynamic explicit method is fast and robust and theseharsignificant advantages of
the algorithm (Belytschket al., 2007).

The major drawback of the algorithm is that it is conditidpatable. This imposes
a critical, maximum, time step that can be approximated @mtiouum elements by the
smallest time needed for a wave to cross one element. Forwdagion of a material like
steel, the wave speedE /p is in the order of km/s combined with element size in the order
of mm that scales the critical time in order @6 (Van den Boogaaret al., 2003). The time
lapse in SPIF is in order of minutes to hours leading to a mimnof 10’ — 10° increments,
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which s prohibitively small. For this reason, explicit sitation needs more computing time
than implicitmethod (Henrard, 2008). To overcome the soréltal time step, the dynamic

explicit method is enhanced by mass scaling. Increasingtms increases artificially the
material density, that decreases the wave speed and iesrbascritical time step. Another
equivalent approach for rate independent material is ttabrgy e.g. to increase the forming
tool velocity.

Many researchers used one of these approaches to increagéittal time step in their
explicit simulation. For instance, a study on warm incretakforming shows that scaling
the mass 100 times reduces the computing time of the staedptitit simulation almost
by factor 85. The use of a larger mass scale factor results in a signifabaviation of
the calculated result as reported by Kahal. (2008). Ambrogicet al. (2005b) observed
a significant time reduction in explicit SPIF simulation kncieasing the tool velocity
artificially 2400 times. The ratio of kinetic energy to intet energy is limited to 10 %
but the achieved time reduction is at the expense of accurdytee provided results were
not satisfactory. For springback analysis in deep draweglicit methods require the
same or even more computation time as the complete formiagepRojelet al., 1998).
The implicit method can perform the springback phase in aifeskements. Therefore,
the forming phase is performed explicitly and often thersginiack is performed implicitly
(Dejardinet al, 2008). In conclusion, the computing time for explicit madls can be
reduced significantly by mass scaling or time scaling butattxpense of accuracy.

For implicit calculations, the Newton (also called Newt&aphson) method is the
most widely used iterative method. It iterates on equilibriof the internal and the external
force using a stiffness matrix (ignoring the inertia for gitstatic processes). The major
advantage of the implicit method is the unconditional digbiBecause of that, the size
of the increment used in an implicit method is much largentktze explicit increment
size. The increment size is limited by the accuracy requinreinand the robustness of
the Newton procedure (Belytschied al., 2007). The implicit method is preferred for its
accuracy. SPIF implicit simulations show better agreemétit experiments than explicit
simulations. Bambacét al. (2005) observed a better prediction of the achieved gegmetr
and Ambrogicet al. (2005b) reported a better prediction of the sheet thinning.

The major disadvantage of the implicit scheme is the largepding time. Performing
a large number of increments for a relatively fine mesh lirSiF implicit simulation to
small academic tests. Several approaches have been pddpasaintain the accuracy and
to speed up the implicit simulation. For incremental forgyia multi-mesh method has
been proposed. The method requires two meshes: a fine medhtéostorage and another
mesh that is mainly coarse with a fine mesh part to model therhaition in the small
contact area. The simulation is performed in the coarse randithe data is transferred
between both meshes using a special operator. The compirtirgasically is reduced
compared to the computing time of performing the simulatisimg the fine mesh. A recent
publication of multi-mesh implementation is done by ovepimg domain decomposition
but only a small deformation has been introduced (BrunssenVdohimuth, 2009). On
the thermo-mechanical simulation of a cogging process @met al., 2009), a parallel
two mesh method is used. The thermal analysis is performedfore mesh coupled to a
mechanical analysis on a coarse mesh. Significant redunt@mmputing time is achieved,
compared to coupled analysis on the fine mesh, because theerpEnsive mechanical
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analysis is performed on the coarse mesh. The idea of dénguplalso applied on (only)
mechanical problems by Sebastianial. (2007). The difference here is that the FE mesh
is decoupled into an elastic part and an elastoplastic fdrese separated two parts are
alternately solved so that the results of one partial modntigdes boundary conditions for
the other, a case study of small deformation is presented.

Another proposal is the use of adaptive remeshing. The laalsiantage is to keep the
number of degrees of freedom as low and efficient as possibta¢duces the computing
time compared to a fine mesh. One level of refining and coargesiimplemented by
Hadoush and van den Boogaard (2008) for SPIF simulation taisdspeeded up twice.
Also, the use of parallel computing is reported in literagie.g. Quigley and Monagan
(2002) simulated spinning process using domain deconipositethod. The previously
mentioned methods for speeding implicit simulations famusfficient modelling or the use
of more computing power but not on efficient implementatibthe iterative procedure. In
conclusion: implicit method is accurate and expensive aging-wise but there is room to
speed the procedure and maintain the accuracy. In the fiolgpgections more details are
introduced to understand the Newton procedure performignaeler to use it efficiently.

2.2 Implicit solution procedure

In SPIF, the tool size is much smaller than the workpiece. siZee tool deforms the
workpiece consequently by small increments. The smallrdedition increment consists of
plastic deformation in the vicinity of the tool embedded imedastic deformation of the rest
of the workpiece. In implicit simulation of SPIF, the plastieformation introduces a strong
nonlinearity in the system of equations (SOE). The stronginearity is a combination of
material and geometrical nonlinearity. The elasticalljodming part of the workpiece
introduces a weak geometrical nonlinearity in the systeracpfations. To emphasize the
strong—weak nonlinearity hypothesis in SPIF, a case stfigjastic loading followed by
elastic unloading of a blank (penetration test) is studied.

2.2.1 Plastic loading and elastic unloading of a blank

In this test, the strong—weak hypothesis is investigatéddrsimulation of tool penetration
and retraction on a clamped plate. This is representativehiofirst and last stage of an
ISF process. A plastic deformation is introduced by movisglaerical tool that is initially
just in contact, 2 mm downwards. Then the blank is relaxed bying the tool away. The
deformation and the relaxation are performed in 20 incremand 5 increments (a load
increment of 0L mm is used), respectively. The FE mesh and position of thieatre shown
in Figure 2.2.

The numerical blank of 10& 100 x 1.2 mn?® is discretized with 6400 triangular shell
elements. The elementtype is the discrete Kirchhoff tliaB®d T for bending (Batoet al,,
1980), combined with a linear membrane element. The eleimen® DOFs per node, 3
translational DOFSUy, Uy, U;) and 3 rotational DOFS/, 8y, 6;). It has 3 integration
points in plane and 7 in thickness direction (in total 21)eTbol is modelled by a 20 mm
diameter analytical sphere. The material model is reptasiga of mild steel and it is kept
as simple as possible. The isotropic yield behavior of thtens is modelled with the von
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Figure 2.2: A sketch of the penetration test, a sample of FEhmaed the tool position.

Mises criterion. The work hardening is governed by the pdaer
o =500( + 0.00243°2 (2.1)

Wheres ande are the flow stress and the equivalent plastic strain, réispdc The material
has a Young’s modulus of 200 GPa and Poisson’s ratiofBor a realistic calculation, it
is acknowledged that a better material model is requiret,ititludes e.g. the anisotropic
behavior of the sheet. The calculated vertical force ondleéis plotted in Figure 2.3. In
the loading stage, the plate is deformed plastically neatdbl and a nonlinear prediction
of the force is observed. In the unloading stage, the pladersielastic springback.

The simulation is implicitly performed using the Newtonrétve procedure imple-
mented in the in—house FE code DiekA. A mechanical unbalsetie of 0.001 is used
for checking the convergence. The number of iterationsiredyper increment during the
simulation is plotted in Figure 2.4. For the loading stagestrof the increments require
3 iterations per increment (on averag® Zerations/increment). During unloading, the
first unloading increment, increment number 21, requireetions and 2 line searches
because of the sharp transition of loading—unloading.dlunloading increments require
more than 1 iteration to converge hence a geometrical neality is involved. Within the
increment before the last, the tool-blank contact is lost #wat explains the kink in the
unloading path. The last unloading increment requires ratitens because of the use of
relative unbalance criterion. Actually, the unbalance#ois very small. The incremental
cost is the multiplication of iteration cost by the numbeitefations consumed in the in-
crement. The iteration cost, on average, #5%. As expected, increment 21 has the largest
CPU time of 15 s since it requires the largest number of itenat The total CPU time is
1793 s. This simulation is performed on a single core of Sun Kid&d50 server with Intel
Xeon X5365, this machine will be used for all simulations preseritethis thesis unless
another machine is mentioned.
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Figure 2.3: The predicted force displacement curve of theepration test.
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Figure 2.4: Number of iterations for the penetration test.

2.2.2 Strong-weak nonlinearity

The test introduced in the previous section is used to eniph#se strong—weak nonlin-
earity. Incrementally, a small region of the blank is plealliy deformed and it is located
in the vicinity of the forming tool. The rest of blank is elestlly deforming. The achieved
equivalent plastic strain at the end of the loading stagede/s in Figure 2.5. The presented
result of the equivalent plastic strain is related to thearpptegration point in thickness
and the same distribution is observed for the rest of thegmatén points through thick-
ness. The maximum achieved equivalent plastic strainli69 Near the close edges a
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Figure 2.5: The achieved upper equivalent plastic straifitthe scale is 8- 0.17. The scale is
reduced to M01— 0.02 in the right figure.

relatively small plastic strain is observed. The plastifodmation is a form of material
nonlinearity. The localised plastic deformation near th@ tndicates that this part of the
material experiences a higher level of stress comparecktoetst. The nonlinearity due to
elastic—plastic transition is much larger than the nomliitg due to change of shape. The
vertical displacement at the end of the loading stage isqdon Figure 2.6. Clearly, a large
displacement gradient is noticed near the tool resulting lerge rotation that is the main
geometrical nonlinearity. The geometrical nonlinearitfget in the blank is strong in the
vicinity of the tool and it is relatively weak away from thealo

As a consequence of the localised plastic deformation ieatol, a combination of
material and geometrical nonlinearities forms a stronglinearity. The rest of the blank
experiences a weak geometrical nonlinearity and it willéfemred to as weak nonlinearity.
To study the strong—weak nonlinearity during the iterafvecedure, the residual force
(unbalance between the external force and internal fort2)rmdes are recorded for the
entire simulation. One of these nodes is located under tiig€strong) while the other one
is located at the center of the blank (weak). For the same,lbeeesidual force in vertical
direction has the most significant residual contributiompared to the other DOFs, for
that the residual force in vertical direction is plotted igre 2.7. Noticing the logarithmic
scale, it becomes clear that the DOF in the vicinity of thd teas a large residual value
and it is reduced significantly with the iterative procedurée residual has to be reduced
to a certain tolerance. The residual of the central DOF invikak nonlinearity region is
negligible compared to the residual value in the strong ineakity region. This holds for
all increments.



12 Aspects of SPIF modelling

2.023

1.799

1.574
1.349
1.124
0.899

0.674

. 0.450

0.225

0.000

Figure 2.6: The vertical displacement at the end of the lggdiage of the penetration test.

2.3 Efficient implicit simulation of localised deformation

Based on the classification of strong and weak nonlineaiitithe previous section, itis clear
that the strongly nonlinear part of the system of equatieqsiires fully nonlinear iterative
treatment. Itis an expensive treatment. The rest of thesysf equations represents alarge
elastic part, which does not need such expensive treatnogitthmas to be created to solve
the system of equations. For the sake of understandingythlcit scheme is summarized
briefly.

The Newton—Raphson method updates an incremental dispéanterectord with an
iterative displacement vectaxd, using the tangent of the nonlinear system of equations
K (d) by solving

R() + K(d)Ad =0 (2.2)

where the residudR(d) defines the difference between the internal forces and ttesrexd
forces

R(d) = fint(d) - fext(d) (2-3)

The Jacobian system matrkk(d) or in engineering terms the effective tangent stiffness
matrix (stiffness matrix), is equal to

6R afint afext )
K(d) = - ad ad = Kint — Kext (2.4)

whereKjtandKeyiare the tangent stiffness matrix and the load stiffnessiradispectively.
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Figure 2.7: The residual evolution, the vertical dashed iidicates the end of an increment, the
marker indicates the iterative residual value.

The linearized model is solved for the iterative change efrtbdal displacementsd
Ad =—-K™ IR (2.5)

the iterative change of the nodal displacements is addetetdatal incremental nodal
displacements _ .
di*tl=dl + Ad (2.6)

where | is the iteration number. If convergence is not achieved littearized model is
recalculated and solved for a nevd. Here, the residual is checked for convergence by the
mechanical unbalance ratio criterion. The mechanical lamoe ratioy is the ratio of the

[2 norm of the residual to thie norm of the internal force

L
IRl

The Newton iteration cost can be split into three parts (MamBoogaareét al., 2003). The
first part creates the linearized model (2.2) this incluttescreation of the tangent stiffness
matrix and the internal force vector (BUILD). Secondly,\8nfj the system of equations
(SOLVE) for the iterative displacement (2.5). The last pautb update the stresses based
on the actual displacement (UPDATE). This means that a [sageof the computing power
is used inefficiently for updating the large elastic part.indgsa relatively less expensive

2.7)
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iterative procedure like the modified Newton to create théreisystem of equation does
not reduce the overall computing time even though it redtlesost of the BUILD phase
on the iteration level. Based on experience, the modifiedtbiewnethod requires a large
number of iterations per increment and smaller incremergssto converge compared to
the full Newton approach.

For such localised numerical nonlinearities in system ofdipns, it becomes necessary
to have different treatments that are accurate and conipnédlly efficient for different parts
of the FE mesh. Similar approaches are reported in the fitexdor mixed treatment in
computational mechanics e.g. the subcycling in explicithrods to overcome the problem
of very small or very stiff elements Belytschlat al. (1979). Another approach is the
implicit—explicit method, where part of the system Jacabiaatrix is treated implicitly
and part explicitly Hughes and Liu (1978). In the followingctions, the internal force
vector and the tangent stiffness matrix for the localisediit deformation part are updated
for every iteration using the full Newton method. For thestilzally deforming part of
the FE mesh, the internal force vector and the tangent sifnmatrix are treated either
by modified Newton method or pseudo-linear approach. Thieeesystem of equations
is solved for each iteration, but the domains are treateféreifitly. The purpose of such
treatmentin the localised deformation implicit simulatie to reduce the overall CPU time.
The implementation and testing is done in the in—house FE EaekA.

2.3.1 Mixed Newton—Modified Newton

As it is observed in SPIF, the system of equations is asserabédo types of DOFs
with respect to the nonlinearities. The first type experé&na strong nonlinearity and the
second type has a weak nonlinearity. It is recommended te fidly nonlinear Newton
treatment for the strong type nonlinear DOFs because otigsigatic convergence. In this
treatmentK and fin are updated every iteration including the geometrical aednaterial
nonlinearities. Contact, or changing the boundary coodsj introduces a nonlinearity in
the system of equations even for the linear elastic systehe OOFs near the tool have
high chances to make contact or to lose contact with the fogrtdol. Therefore, iterative
treatmentis necessary for these DOFs in order to predictdhtact. The weak nonlinearity
in the second type of DOFs is treated by the modified Newtorhatet In this treatment,
the fijnt is updated fully nonlinear and this is similar to the Newt@paach.

The difference between the Newton method and the modifiedtdfemethod is the
treatment of the effective tangent stiffness matrix. Inrtredified Newton method is not
updated iteratively, instead a previously calculated reused. This previously calculated
stiffness matrix might be calculated at the start of theenoent or several increments before
(Zienkiewicz and Taylor, 2005). Here, the stiffness maisixalculated at the beginning
of each increment including the geometrical and materialinearities. Within only one
increment, the stiffness matrix is reused and it is updatedinearly at the beginning of the
next increment. It is worth mentioning that the residual &malstiffness matrix of the FE
mesh that is treated by the modified Newton method has nawtissntribution. Iteratively,
the global effective tangergop is assembled of the iteratively updated stiffness matrix
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and the incrementally updated stiffness matrix

ITE INE
KGIob — Z K‘Ieter + Z Kéncr (2.8)
e=1 e=1

where the superscript abbreviation Glob, Iter and Incr dwbd, iterative and incremental,
respectively. Actually, it is an assembly operation notrapge summation operation and it
is used for convenience. The assembly operation is perfdover the number of iterative
elements ITE and the number of incremental elements INEhiiterative and incremental
stiffness matrix, respectively. The global residual foveetor is assembled

ITE+INE

RG|Ob — Z Re (29)
e=1

the residual force vector for all elements in FE mesh is iteety updated. Now, the entire
system of equations is solved fard (2.5) and the total increment is updated (2.6). The
new internal force vector is found and the convergence islaed (2.7).

This mixed Newton—-modified Newton (NmN) approach is appt@dhe penetration
test. The FE mesh is classified into a strong nonlinear parhe vicinity of the tool,
that is colored in gray in Figure 2.8 and the weak nonlineat (white), presenting the
rest of FE mesh. The predicted tool force by the NmN approschlimost, equal to the
prediction achieved by the full Newton approach, Figure ZZBe maximum error is less
than Q02 N (00025 %) and it has been observed in the unloading stage. Xbalent
agreement is achieved by classifying the right elementhénstrong nonlinearity group,
applying the full Newton treatment. The residual historyRfin the strong nonlinearity
region is preserved for amplitude and pattern as shown iar€ig.10. The same number
of iterations required by the Newton simulation (Figure)2ahd line search, is consumed
by the mixed Newton—-modified Newton approach and in the sanher.o

The total CPU time of the mixed Newton—-modified Newton apphoia 157 s that is
22.3 sless than the full Newton approach (138). In the Newton approach the costs of the
main parts are 18 s (486%), 028 s (115%) and 097 s (399%) for BUILD, SOLVE and
UPDATE, respectively. The reduction in the overall CPU tisachieved by reducing each
increment cost as plotted in Figure 2.11. In this case sthdylNmN approach applies fully
iterative treatment for 36% of elements (gray areain Fi@u8@ and 64% of the elements are
treated by the modified Newton method. The cost of the firstiten in the NmN approach
is the same as the Newton approach and that is independgpittofitio of elements into
Newton or modified Newton within NmN. After the first iteratipthe BUILD CPU cost,
in NmN, is reduced because the stiffness matrix of 64% of taments is not calulated
again. The BUILD CPU cost becomes the cost of calcultingtiffasss of 36% of elements
and the force vector of all elements and it i§®s. The cost of SOLVE is similar for all
iterations because NmN has no interaction with the solvéh@system of equations size.
Also, the UPDATE cost is similar because the modified Newtathod is equal to the
Newton method with respect to UPDATE. The reduction in Nmid&remental cost is a
result of reducing BUILD cost only. The total reduction oetNNmN incremental cost is
equal to the reduction in BUILD cost times the number of itierss except the first one. A
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Figure 2.8: Sketch of FE mesh classification into Newtontinesat (gray) and modified Newton
or pseudo-linear treatment (white).
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Figure 2.9: A comparison of the predicted force displacersanve by mixed Newton—-modified
Newton approach and Newton approach (left), error evatutioring the simulation
(right).

large number of iterations per increment increases theatéxfuin incremental cost. The

maximum reduction in NmN incremental cost i82 for increment number 21 which uses
6 iterations. To this end, a reduction is observed in thedstehNewton incremental cost

by applying the mixed Newton—modified Newton approach aeduiedicted results have

excellent agreement with the results achieved by the fulitda method.
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Figure 2.11: A comparison of the iterations cost betweemthesd Newton—modified Newton
approach and the Newton approach. The first iteration of @arbhment (left) and
the other iterations (right). The results are presentedftmement number 15.

2.3.2 Two domain approach

In this approach, the FE mesh is split into two parts as in tireedhnNewton—modified
Newton approach. The first part contains the strong nonlitygia the vicinity of the tool
(the gray area in Figure 2.8). It is an iterative part thataslmearly updated and predicts
the plastic deformation iteratively. The second part medeé¢ elastically deforming part
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of the blank and it is treated pseudo-linearly. It modelgdinelastic deformation within

the number of increments. The nonlinearity is updated abdginning of the increment

or group of increments. Here, the pseudo-linear treatngeapplied incrementally. At the

beginning of the increment, the stiffness matrix and theriml force vector is calculated
fully nonlinear that includes the geometrical and the mat@onlinearities of the previous

increments. This applies for the entire FE mesh (the plastitthe pseudo-linear elastic
part). The linearized model is assembled, there is no diffee in treatment between the
plastic and the elastic parts, to this point. The systemlieesioat once forAd.

In the strong nonlinearity zone, the new stress state isimeanlly updated. This is an
expensive procedure because an iterative procedure ida$ied the balance between the
elastic and plastic strain, it is often referred to by retonapping algorithm. This procedure
is performed on the integration point level. The new intéforce vector is determined and
the contribution in the residual vector is created. The waaiklinearity zone (elastically
deforming)is treated with a less expensive approach. Thssds are assumed to be linearly
and elastically related to the strains. As a consequeneéntérnal force vector is updated
linearly by the multiplication of the stiffness matrix arftetincremental displacements as

fite = fing + Kingd! (2.10)

the residual contribution of the linear elastic has no exdEforce contribution. The global
residual is assembled

ITE INE
RGIob — Z Rger+ Z Rlencr (2'11)
e=1 e=1

The convergence is checked and often more iterations aneeel In the following iteration,
K and fin: of the plastic part are nonlinearly updated. TKeof the elastically deforming
FE is not updated and kept constant as it is treated in thechiesvton—modified Newton
approach while thdin; is linearly updated as in (2.10) instead of being updatedimearly.
The Kgiop is assembled of the iteratively updated part and the incnéatlg constant part
as in (2.8). The residual force vector is assembled of thatiteely updated part and the
linearly updated elastic part as in (2.11). The linearizedlei is created and solved and so
on.

The performance of the two domain approach is tested usmgéhetration test. The
predicted tool force by the two domain approach has a verndgmreement with the
prediction achieved by the Newton approach as shown in Eigur2. The maximum error
in the force prediction is observed during the unloadingstaA maximum error of ®%
(less than 2 N) at the third unloading increment is found,olvhs within the acceptable
limit. During the loading stage, the same number of iteradiper increment is used by
the two domain approach as in the Newton approach. Rheonvergence behaviour of
the strong nonlinearity by the two domain approach coirsigéh the prediction by the
Newton approach, Figure 2.13. The two domain has a similaatieur as the Newton
approach during the unloading stage except for a sligheudifice for the first unloading
increment. Both approaches perform similarly for the firgegations of the first unloading
increment. Atthe fourth iteration, The two domain has a glaimbalance of @0098 while
the Newton has a global unbalance @102, a convergence tolerance dd@1 is used
in both simulations. The Newton approach requires one nteration to converge. At
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Figure 2.12: A comparison of the predicted force displacgroarve by the two domain approach
and the Newton approach (left), error evolution during timeuation (right).
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Figure 2.13: The strong nonlinearity evolution in two domand Newton approaches for the
loading stage (left) and the unloading stage (right). Th#iced grid indicates the
end of the increment in the Newton approach.

convergence, both approaches have not reached the coot@ergence. Another iteration
is required to achieve contact convergence. Inthisitenatin increased value B¢ residual
is observed but the global convergence is already achieved.

The overall CPU time of the two domain approach is 24, that is 55 s less than
the CPU time of the Newton approach. The incremental cosigisifcantly less than
the incremental cost of the Newton approach as shown in €igur4. The reduction in
incremental cost is a result of reducing each iteration.d@snsidering increment number
15, the cost of UPDATE is reduced fronf7's to 054s (44.3%) by two domain, for each
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Figure 2.14: A comparison of the iterations cost between domain approach and Newton
approach. The first iteration of each increment (left) areddther iterations (right).
The results are presented for increment number 15.

iteration. The two domain cost of BUILD is equal to the Newtmst of BUILD for the first
iteration only while a reduction 0f54.2% for BUILD is achieved (from 118s to 054s) by
two domain for the later iterations.

The advantage of the two domain approach over the mixed Newrtodified Newton
approach is related to the stress update procedure in the &astically deforming FE
part. In the mixed Newton—modified Newton approach, thesstig nonlinearly updated
using return mapping algorithm (expensive procedure).tk@two domain approach, it is
assumed to be linearly and elastically related to the sthairefore is not updated within the
increment. This less expensive treatment reduces the UEDW@&Tation cost significantly
even for the first iteration of each increment. After the cengence of the increment, a
fully nonlinear update of the stress state is performeddbasghe displacementincrement.
This nonlinear evaluation updates the small material aadjfometrical nonlinearity. The
material update may introduce a plastic deformation in flippsed elastically deforming
FE mesh that is not checked for equilibrium. Therefore, the sf the plastic region has to
be selected carefully to accurately model the introducddrdeation. The cost of updating
the stress state of the pseudo-linear domain is part of tbeltvnain incremental cost and
it is performed once per increment.

2.3.3 Three domain approach

The new part in this approach is the split of the pseudo-fireatment of the weak nonlin-
earity zone (elastically deforming) into two parts. Thetfpartis a pseudo-linear treatment
within one increment and the nonlinearities is considetetastart of the increment only.
The second part is similar to the first part except that thediity is assumed for a group
of increments instead of one increment. Now, the FE mesheoéttire model is split into
3 domains as shown in Figure 2.15. The first domain is treaéedtively fully nonlinear,
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Figure 2.15: Sketch of FE mesh classification into Newt@rative, treatment (gray) and incre-
mental pseudo-linear treatment (white) and multi-incretakpseudo-linear treat-
ment (light gray).

the gray colored part. The second domain applies an increxhgseudo-linear treatment
(white part). The multi-incremental pseudo-linear dom@ight gray) models the last part.

The penetration test is performed by the three domain apphroBhe FE mesh is split
into 36% iteratively, 28% incrementally and 36% multi-inorentally updated treatment.
This reduces the overall CPU time to 110 s that is369less than the Newton approach
and 117 s less than the two domain approach. The lower computing tequired by
the three domain compared to two domain is achieved becdugmlating 4375% of the
elastically deforming part by multi-incremental and.Z8% by the incremental pseudo-
linear treatment. In the multi-incremental domain, théfretiss matrix and internal force
vector are calculated only once for the entire simulatioine ihternal force vector is linearly
updated as in (2.10) by the multiplication of the stiffnesgmx and the corresponding total
incremental displacements. The evolution of iterationadteincrement is similar to the
Newton approach. A very good agreementis achieved in thdiqgiezl force—displacement
curve as shown in Figure 2.16 with error less thaB096 (2 N). To conclude, the two domain
and three domain approaches speed up the standard Newtoodtsta factor of 47 and
1.63, respectively. An important aspect influencing the spegthctor is the ratio of the
elements that are iteratively, incrementally or multiremmentally treated.

2.4 Summary and conclusions

In this chapter, the challenge of simulating SPIF procegsrésented. The challenge,
simply, is using a small size forming tool that introducesspic deformation locally. This
requires performing thousands of load increments on aivelgifine FE mesh resulting in
enormous computing time regardless of the used numerioaggiures: explicit or implicit.
The explicit scheme CPU time can be reduced significantihbyse of mass scaling ortime
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Figure 2.16: A comparison of the predicted force displacgnoeirve by the three domain ap-
proach and Newton approach (left), error evolution durimg simulation (right).

scaling. This reduction in the overall CPU time of explidgihsilation is at the expense of
the achieved accuracy. Itis observed that the implicit Sftfulation is more accurate than
the explicitin predicting the final geometry and the sheigirting. The implicitincremental
CPU time is expensive because of the iterative aspect thasdly is expensive. Several
approaches are proposed in order to reduce the SPIF im@Ri time. Mainly, these
approaches focus on efficient modeling or the use of more otingppower.

Because of the localised plastic deformation, part of therfelsh that is in the vicinity
of the tool experiences a strong nonlinearity. The stronginearity is a combination of the
material and geometrical nonlinearities. The rest of therfesh that models the elastically
deforming part of the blank experiences only a weak nontibedt is required to use the
standard Newton method because of the strong nonlineaiitithe system of equations
but it is inefficiently used for the large elastically defang part. Therefore, it becomes
necessary to have different treatments that are accurdte@nputationally efficient for
different part of the FE mesh. The fully nonlinear Newtoratraent is used for the localised
plastic deformation. The rest of the FE mesh that is eldftidaforming is treated either by
the modified Newton method or the pseudo-linear approach plinpose of such treatment
in implicit simulation of SPIF is to reduce the overall CPth&. The implementation and
testing is done in the in—house FE code DiekA.

A case study of localised deformation of a blank using snoallis studied. The overall
computing time for all used approaches is summarized ineTadl. Different speeding
factors are achieved based on the treatment of the elagtiforming part. The mixed
Newton—modified Newton speeds up the Newton simulation.i.1This is achieved by
the use of the modified Newton approach. The two domain appr@aplies a pseudo-linear
treatment that has a linear treatment within the incremdnilievthe nonlinear treatment is
applied only at the beginning of each increment for the ni@tand geometrical nonlin-
earities. This results in speeding the Newton simulatiod.dy. The best performance of
speeding the Newton simulation is achieved by the three doapproach (63) because
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Table 2.1: The overall computing time for different appiioes. The speeding factor is defined
as the ratio of Newton CPU time, reference, to a particularegch CPU time.

Newton NmN two domain three domain

CPU time (s) 179.3 157 121.7 110
Speeding Factor 1.00 1.14 1.47 1.63

the elastically deforming part is split into two parts. Boidrts are treated pseudo-linearly,
one part is incrementally and the other is for all incremeinéd is even less expensive. In
all proposed approaches, the error in predicting the toaefdés less than 1%. The most
accurate approach is the mixed Newton—modified Newton aaprolt is clear now that
the SPIF implicit simulation cost can be reduced by applhgffigiently treated zones as
required.

But, several important issues are still open to investigatiFirst of all, the definition
of partitions that are treated differently is presenteddoelatively simple case, fixed in—
plane tool position, while the tool path in a SPIF process @sarcomplex. The ratio of
the partitions has an impact on accelerating the SPIF imglimulation and it is clearly
defined based on experience. Therefore, automated feaawedo be introduced to notify
the distribution (location) and the optimized size of thpatitions in order to simulate the
localised plastic deformation efficiently in the simulattiof a SPIF process.






3. Adaptive domain classification

In the previous chapter, an efficient implementation of thelicit solution procedure for
localized deformation is introduced. A fixed partitionin§tbhe FE mesh is used for a
simple test in which a blank is plastically deformed by a sitaall followed by springback.
The special aspect of incremental sheet forming requirsttie small sized forming tool
travels all over the blank in order to introduce the globdbdeation. For this reason, this
chapter focuses on introducing a procedure that contrelp#rtitioning of the FE mesh.
The main tasks of this procedure are firstly to define the disach partition and secondly
to define the location and the distribution of these pariiio The major components of
this procedure are super elements and indicators. The ragkndf a super element is to
organize and manage the data that are used in the impliaegdtoe, in Section 3.1. Super
elements are generically classified regarding the updadgiéncy (iterative, incremental or
multi-incremental). This is performed by introducing indtors that can define the super
elements classification prior to load increment. The intic@are based on the current tool
location, the plastic deformation during the previous lgaatement and the shape change
during the previous load increment. The indicators areudised in Section 3.2. The
performance of the efficient implementation of the implimibcedure combined with the
introduced indicators is investigated by two case studi@somemental forming processes.
The first case is to simulate one loop of SPIF and the secords&s simulate continuous
bending under tension in Section 3.3.

3.1 Super element (substructuring)

The basic idea of grouping a particular FE mesh into severaiselements, substructures
or domains is often used in the finite element method for difiepurposes. It is adopted
early in structural analysis where a complete structuraitifioned into a number of sub-
structures that can be treated as complex structural elsmiriernal displacements of the
substructure are condensed to the external (boundarypdeEments then the displacement
method, for instance, is applied to the partitioned stmectiEach substructure can then be
analyzed separately under known substructure—boundgrladiements or forces (Przemie-
niecki, 1968). Another use of super elements is to presenptex element behavior e.g. a
general beam finite element with deformable cross sectioririsduced by Zivkovicet al.
(2001). This special element is formulated as a super eletinaiconsists of isoparametric
subelements (3D, shell and beam). In this thesis a supeealegused in order to organize
the elements tangent stiffness matrix, internal forceareanid degrees of freedom. Also, it
facilitates the management of updating these data for ¢awtion, increment or number
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One super element

Figure 3.1: FE mesh of 6400 triangular shell elements paméd in 100 super elements.

of increments for an efficient implementation of the impliéme integration procedure.
A super element can be one element or a group of elements. tyar FE model is
represented by a group of super elements instead of elemAntgxample is shown in
Figure 3.1.

The super element tangent stiffness makiXUP®'is assembled of the related element
stiffness matrices as

SE
KSUPEr= " Ko (3.1)
e=1

where SE is the number of elements grouped in the super element. Tdmbtangent
stiffness matrixk ¢'°P is assembled of super element tangent stiffness matrices

ss
KO = 3" kP (3.2)
s=1
whereS Sis the number of super elements in the FE mesh. The supereiémernal force
vector f>"P*" and the global internal force vectdf°Pare assembled similarly
S SE
fintuper= Z finte (3.3)
e=1
ss s
gl =>" fioes (3.4)
s=1

The super element contains also the related incremenfdadisment!.

Up to this point, the system of equations is assembled ofiperselements contributions
and regardless of the frequency of updating these coniibsi{tangent stiffness matrix and
internal force vector) and the distribution of the supenwat based on the update frequency.
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Figure 3.2: FE mesh partitioned into two domains of difféngpdate treatment (left). The same
two domains are modeled by several super elements (righit)t86 and 64 for the
gray domain and the white domain, respectively.

This re—arranges the layout of the implicit time integratjsrocedure and facilitates the
implementation of the efficient implicit procedure basedsoiper elements. By the use
of super elements, the FE mesh partitioning presented inr&ig.8 is modeled by several
super elements per domain, as shown in Figure 3.2. A superegliecan belong only to
one partition since each partition has a different freqyesfaipdating the super element
contributions. Also, the FE mesh is grouped into non—oygréal super elements. It is
important to mention that the size of the system of equati®ssnilar to its original size
and the entire system of equations is solved at once.

3.1.1 Implementation of the efficient implicit approach

The efficient implicit approach, introduced in the previa@bspter, is implemented by the
use of super elements. The approach splits the FE mesh aradively, incrementally
and multi-incrementally updated domains and it accelsridwe simulation compared to the
standard Newton simulation that updates the entire FE mesly éeration. The iterative
treatment updates geometrical and material nonlineaoityttfe tangent stiffness matrix
and the internal force vector for each iteration. Updatithg@per elements in a FE mesh
iteratively results in achieving exactly the same resutfsieved by the standard Newton
method to machine precision and introduces no reductidmarsimulation CPU time. The
iteratively updated treatment is recommended for the jglalbt deforming domain of the
FE mesh.

The incrementally updated treatment of a super elemeniesppdeudo-linear behavior
within the load increment. The tangent stiffness matrix #relinternal force vector are
calculated at the beginning of each increment and that deduhe geometrical and the
material nonlinearity. The super element tangent stifimaatrixK SUP®'is assembled once
and it is used for all iterations within the increment, i.¢.isiconsidered constant within
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=

Figure 3.3: The initial FE mesh of a strip (top) and the FE mastine end of the deformation
(bottom).

the increment. The super element internal force veqf@peris calculated from the actual
stresses at the beginning of the increment. Then, it is @adatearly within the increment
by the multiplication of SUPe"with the super element’s incremental displacement vestor a
presented in (2.10). At the beginning of next load incremantupdate of the geometrical
and material nonlinearity is performed ferSUPe" and f.>"P*" This update is based on
the converged load increment and the incremental displan&sn All elements contained
within the super element are updated. This treatment ismewended for the elastically
deforming part of the FE mesh that experiences a weak narligdecause of geometrical
effects (change of shape). It is less expensive compardtktidrative treatment. The
multi-incremental update procedure is similar to the inteatal update treatment except it
is performed over a number of increments instead of over oocrement.

Validation

A simple test is proposed to investigate the influence ofitteatization in an incrementally
treated super element with respect to geometrical noniilye&or this purpose, an initially
flat strip of 50x 5 x 1.2 mn? with elastic material is modelled with 160 shell elements as
plotted in Figure 3.3. The edge on the left of the strip is ctatgly clamped. The edge on
the right is moved 5 mm downwards while the rotations and liar@translation degrees of
freedom are suppressed. Four increment sizes are corgidléde 0.1, 0.2 and 05 mm.

The FE mesh of the strip is grouped in one super element. Twalations are carried out
perincrementsize. In the first simulation, the geometricedlinearity is treated iteratively
like in the standard Newton implicit method (lterative).the second simulation the super
element is updated incrementally (Increment). The gedoatnonlinearity is neglected
withinthe incrementand updated nonlinearly at the begigof each increment as explained
before.

To compare the results, the in-plane force (longitudinatiha right edge for a displace-
mentincrement of @ mm is plotted in Figure 3.4. The achieved force by the inaetally
updated approach has a very good agreement with the staNdatdn (iterative) approach
with a maximum error of 7%. The achieved force by the incrementally updated approac
for the other increment sizes has the same pattern, the isrpdotted in Figure 3.5. As
expected, the largest increment size o @im gives the largest error of 4%. In SPIF
simulations the displacement per increment will usuallynfiech smaller. Under these
conditions, the incrementally linearized approach candresiclered valid. Similarly, the
multi-incremental linearized approach is validated foafier increments that are grouped
in one large increment.
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Figure 3.4: A comparison between the in-plane force acki®yethe incremental update and the
standard Newton approach (iterative) for an incrementaife2 mm.
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Figure 3.5: The error in reaction force introduced by theréneental compared to the classical
implicit approach.

In general, The FE mesh of an efficient implicit SPIF simualatis made of super

elements with different update strategy. The classificatbthese super elements and
location is explained in the next section.
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3.2 Indicators for nonlinearity

The task in this section is to generically define the updatqufency of a super element
(iterative, incremental or multi-incremental). This isffmemed by introducing indicators
that can define the super elements classification prior t ilmerement. These indicators
are based and developed for localized plastic deformafidme indicators are the current
tool location, the plastic deformation in the previous laactement and the shape change
in the previous load increment. The motivation for the irdars and their performance are
the topics of the following sections.

3.2.1 Tool indicator

In localized plastic deformation like e.g. SPIF, plastidadmation is introduced in the
vicinity of the forming tool. The influence of the tool diameetin the SPIF process is
reported in the literature. A smaller tool diameter concaties the strain under the forming
tool and the increase of tool diameter tends to distribuéestinain over a more extended
area. As the forming tool diameter increases the processiesmore similar to traditional
stamping (Jeswiegt al,, 2005). Practically, the decrease of the tool diameteeiases the
forming limits (Fratiniet al,, 2004). Hirtet al. (2002) observes that by decreasing the tool
diameter from 30 mm to 6 mm a higher strain and deformationbeaachieved.

It becomes intuitive to use the location of the forming toslaa indicator. The tool
triggers the location of plastic deformation but it does define the size of the plastically
deforming part in a FE mesh. The size of the plastic regionbeadefined by finding the
super elements that are located in the vicinity of the fogivol. In order to implement
that, a number of virtual cross points are introduced in tBenfresh. A cross point can
be a common node between 4 adjacent super elements, comgitier super elements
partitioning in Figure 3.1. Each super element is attacbeat teast one cross point. The
projected distance of the cross points to the tool surfaeecalculated prior to the load
increment. The closest cross point, for instance, to thesodace can be used to notify
that the attached 4 super elements define the plastic re@loese super elements have to
be updated iteratively in order to capture the introducediit deformation. Actually, the
cross points are attached to nodes in the FE mesh and asthesdordinates of the cross
points are updated for each load increment and consequébetiyrojected distance to the
tool surface. The movement of the tool changes the activesqguoint(s) and that defines a
new set of super elements to be iteratively updated or malidoeadme set for a number of
load increments. In the same way, the rest of the super elsroan be classified to use the
incremental update or the multi-incremental update gsate

To investigate the performance of the tool indicator, thet teith plastic loading of
a blank followed by elastic unloading (penetration test)raduced in 2.2.1, is used. The
predicted tool force is used as a parameter to check theaneun this test, four simulations
are performed each with a different setting for the tool @adior. These settings define only
the closest cross point and cross points withi 0.0, 1.5 times the tool radius away from
the tool surface. The active cross point(s) classify thechttd super elements for iterative
treatment. The rest of super elements within the FE meshlassified for incremental
update treatment. The predicted force—displacement swake shown in Figure 3.6. In
general, all tool indicator settings successfully prettietpattern of the force—displacement
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Figure 3.6: The predicted force displacement curve in patieh test test by standard method
and iterative—incremental treatment with different toettsgs for the tool indicator
(left), error evolution during the simulation (right).

Table 3.1: The iterative and the incremental ratios foredléht tool indicator settings.

Newton Closest 05R 10R 15R

aer% 100 4 12 16 24
aIncr % 0 96 88 84 76

curve. A larger size of searching radius gives a better ptixfi of the tool force because it
includes more of the plastic region. The result for a seaghadius of 15 times the tool
radius (15R) is the best among the tested settings of the tool indigatbh maximum error
of 4.4N.

This good result by the.BR simulation is achieved because almost the correct size
of the plastically deforming part of the FE mesh is updatethively. An example of the
assumed plastic region and consequently the iterativedyed super elements for 2 different
settings of the tool indicator is shown in Figure 3.7. It isetved that the iterative region
size and location have been fixed for each tool indicatoingetiecause only a vertical
movement has been introduced in this test. The iterativie taf, defines the ratio of
iteratively treated super elements to the total number péselement within a FE mesh.
Similarly, the incremental rati@ncr and the multi-incremental ratioviner defines the ratio
of incrementally and multi-incrementally treated supeneénts to the total super elements
in a FE mesh respectively. The ratio of each treatment féerint tool indicator settings is
listed in Table 3.1. Noting that in these simulations thetirintremental update treatment
is not used just to demonstrate a simple classification ofdiper elements. The computing
time of all simulations is summarized in Table 3.2. As expd¢cthe use of one cross point
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Figure 3.7: The assumed plastic region size and locatior fdifferent tool indicator settings
that are a search radius of50(left) and 15 times the tool radius (right) and the
corresponding super element classification into iterafpaate (gray) and incremental
treatment (white).

Table 3.2: The overall computing time and the correspondpeeding factor for the simulations
with different tool indicator settings.

Newton Closest 05R 10R 15R

CPU time (s) 178.0 85.9 98.8 101.7 109.3
Speeding factor 1.00 2.07 1.80 1.75 1.62

to classify the iterative super elements requires the gsialCLPU time of 8® s and it
accelerates the standard Newton simulation I8y 2Zimes.

3.2.2 Plastic indicator

The major drawback of the tool indicator is that the searghadius has to be increased in
order to define the correct plastic region. This increas@é®fearching radius may include
super elements that do not need to be treated iterativelyidBea definition of the proper
value of the searching radius requires some experiencethireason, an indicator that
depends on the evolution of displacementfield or other ddmpuantities is more robust. The
material nonlinearity is evaluated for each iteration @ré@ment(s) depending on the update
strategy even though the incremental and the multi-increaiéreated super elements are
assumed to model elastic deformation. This means that #stigty of the previous load
incrementis known prior to the iterative procedure to sdhessystem of equations for both
the iteratively and the incrementally treated super el@mand for the multi-incrementally
super elements if they are updated at the previous loadrmemé This knowledge is used
to develop the plastic indicator.

The plastic indicator is based on checking an introducestiglancrementin the previous
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Figure 3.8: The predicted force displacement curve in patieh test by standard method and
iterative—incremental treatment with plastic indicatsing different super element
size (left), error evolution during the simulation (right)

load increment for the iteratively updated and increméypigpdated super elements. It
checks each integration point of each element within theesefement. Based on this
check, if at least one integration point within an elemenlidates a plastic deformation,
in the previous load increment, the entire super elementaissified for iterative update

treatment. Otherwise, the super element is classified ®oirttremental update treatment.
The plastic indicator can generically classify the supeneints of a FE mesh into the
iterative and incremental update treatment. One integuatoint can shift a super element
from incremental treatment to iterative treatment and wieesa. The influence of the

super element size (number of element per super elemenriEcmore pronounced in

the iterative ratio and the increment ratio and consequemtthe speeding of the standard
implicit simulation.

The performance of the plastic indicator is checked usimgpbnetration test. Three
different sizes of the super elements are checked. Theréliffesizes are 44 and 256
elements per super element and they are referred to,&8684and S256. It corresponds to
group the FE mesh into 160000 and 25 super elements, respectively. The predicted tool
force is shown in Figure 3.8. The largest super element sitang S256 predicts the best
fit to the achieved force prediction by the standard Newtaopliicit simulation. All plastic
indicator settings performed very good during the loaditagje (till increment number 20)
almost zero error except S4 at the first four increments. Sériees the previous plastic
deformation well, but it does not extend to the neighboringes elements that are going
to experience plastic deformation in the coming load in@etn A larger super element
includes more elements that may be treated inefficientlyheyiterative update but it is
ready to capture the introduction of plastic deformatiothi@ next load increments.

By using the plastic indicator, the super elements are ifladsnto either the iterative
or the incremental update treatment. The evolution of th&iive ratio for different super
element sizes is shown in Figure 3.9. Regardless of the ®iperent size, the iterative



34 Adaptive domain classification

o
o)

o
o

Iterative ratio

o
~

0.2r

0 5 10 15 20 25
Number of increments

Figure 3.9: Iterative ratio evolution for differrent supsement size.

ratio starts at one because the first load increment is usettiize the FE model and
therefore all super elements are set into the iterativetrireat. After that, the plastic
indicator becomes active and the iterative ratio drops tmavalue because the process is
still in its initial stage. Then the iterative ratio incresswith further plastic deformation
that extends over a larger area. During the unloading stageefnent 21 to increment
25), the iterative ratio is expected to reduce to zero, big itot, and that indicates that
a small material nonlinearity occurs during the unloaditage. The difference between
the iterative ratios is a result of different super elemer¢s a larger super element size
predicts a larger iterative ratio. Excluding the first intient, the maximum iterative ratio
is 30.7%, 35.0% and 440% for S4 S64 and S256, respectively. No super elements are
classified into the multi-incremental update treatmentdfoge the multi-incremental ratio
is zero for all simulations. The incremental ratio becomgs = 1 — ajter Since the sum
of the ratio has to be one.

The plastic indicator successfully defines the locatiorhefplastic deformation zone
but the size is influenced by the size of the super element.largest size of the plastic
deformationis defined by the S256 simulation and the smdélabe S4 simulation, asample
of the plastic deformation region at the end of the loadimgstis shown in Figure 3.10.
The CPU time of the simulations is summarized in Table 3.3e $imaller size of the
super element, iterative ratio, is better in acceleratirggdtandard Newton simulation that
is speeded up.®5 times by S4.

3.2.3 Geometrical indicator

In the previous sections, the super elements are classiftedterative and incremental
update treatment only and the multi-incremental treatrisemdt included in the performed
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Table 3.3: The overall computing time and the correspondipeeding factor using the plastic
indicator.

Newton S4 S64  S256

CPU time (s) 178.0 107.7 110.1 1161
Speeding factor 1.00 1.65 1.62 1.53

Figure 3.10: Predicted plastic region by differrent sudenent size: S4 (left) and S256 (right).

simulations. The tool indicator can be extended to clagbi€ysuper elements into three
different update frequency regions by introducing two skang radii. One of these radii

can classify the super elements at a given distance fronotilestirface into the iterative

treatment while a larger searching radius classifies thghteirs (to some extent) into the
incremental update treatment. The rest of super elemesateainto the multi-incremental

update treatment. By this setting, the movement of the teslilts in a change of the
super elements classifications. A formerly multi-increta¢super element is updated if
it is located in the range of the incremental searching adiod it will be updated each
increment afterward, otherwise it is not updated and that beafor the entire simulation.

Another option for updating a multi-incremental super ebitis to perform the update after
a number of increments. This option is more dependent ondpertise of the analyst, but
it does not consider the influence of shape change. For thsore a geometrically based
indicator is developed to control the frequency of updagimgulti-incremental treated super
element.

Super elements based simulation controls the frequencypdé#ting super elements.
Meanwhile the system of equations, including all degreefsegfdom, are solved in each
iteration and that updates the incremental displacemeanitvd. Consequently, the coor-
dinates in the model are updated and that results in a shapegehn the entire FE mesh.
Within the structure of a multi-incremental treated suplenent, a check is performed
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Figure 3.11: The predicted force displacement curve in patien test by standard method and
super element method based on iterative and multi-incréeaheeatments with and
without geometrical indicator (left), error evolution dg the simulation (right).

that calculates the normal vector of each element withirstiger element. This check is
performed incrementally after the convergence of the tiegrocedure. The newly cal-
culated element normal vector is compared to the calculadechal vector at the moment
of updating the geometrical and the material nonlinearitiefore several increments. The
normal vector change in orientation by an anjlean be used to indicate a shape change.
Based on that, the change of only one element can triggetthiagntire super element
requires an update. The update is performed for that p#aticaulti-incremental super
element prior to the new load increment and a new updateifitag®n can be assigned to
the super element.

The penetration test is used to check the performance ofthengtrical indicator. Two
tests are performed and compared to the standard Newtotesioru The first simulation
has either iterative or multi-incremental treated supemednts (Iter—MlIncr), no incremental
region. Based on the tool, a search radius is used to clasgifgup of super elements into
the iterative treatment. The classification of the supemelgts is fixed and the multi-
incremental super elements are not updated for the entimelation. The second test has
the same setting as the first test and the geometrical imndisactivated (Geom). A change
in an element normal vector orientation by half a degreeéslas threshold to turn a multi-
incremental treated super element into an incrementaktiesaiper element. The predicted
force is shown in Figure 3.11. The introduction of the gearnat indicator reduces the
error in the force prediction to less than 9 N. The indicatlpls in enhancing the prediction
of the force compared to the simulation without the use ofgib@metrical indicator.

The evolution of the super element classification rati@s#iive, incremental and multi-
incremental) is shown in Figure 3.12. In both simulatioiss@per elements are classified
as iterative treatment for the first load increment and fer tbst of the simulation the
indicator always results in an iterative ratio of 24%. Aftecrement 7, the geometrical
indicator successfuly starts changing some of multi-imzatal super elements into the
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Figure 3.12: The evolution of the super element classificatinto iterative (top left), incremental
(top right) and multi-incremental (bottom).

Table 3.4: The overall computing time and the correspondipeeding factor using the plastic
indicator.

Newton Geom Iter—Mincr

CPU time (s) 178.0 89.1 84.6
Speeding factor 1.00 2.00 2.10

incremental treatment, therefore the incremental ratinéseased from zero to 30% and
the multi-incremental ratio is reduced by the same valusff&% to 46%. The simulation

using the geometrical indicator requires slightly more GPhé than the simulation without

the indicator but it is still twice as fast as the standard dewsimulation, the performance
of the simulations is listed in Table 3.4.
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3.3 Case studies

Up to this point, the efficient implicit method based on suglements is introduced and
tested using a simple test of localised deformation. Alseerl indicators are introduced
to classify the super elements into an iterative, incredeamd multi-incremental updated
strategy. Now, two real-life applications are used to dest@te the capability of the

efficient implicit method with the use of the indicators teesp up the standard Newton
implicit simulation of these applications. The first casedstis performing one loop of

single pointincremental forming SPIF and the second cdegoisrform continuous bending
under tension of a strip by three rolls.

3.3.1 One loop of SPIF

In this case study, one loop of a single point incrementahfog SPIF process is simulated.
The numerical model that is introduced in Section 2.2.1 eduere. The simulation starts
by moving the tool that is initially in contact®mm downwards in the vertical direction
(z coordinate) to introduce a penetration in the blank. At tleigtical position, the forming
tool starts moving in—plane following a tool path that draaveectangle in the blank and
ends at the starting position of in—plane movement. Théalrtibol position and the tool
path are shown in Figure 3.13.

Two simulations are performed based on the efficient imipdipproach. In both simu-
lations, the FE mesh is grouped into 1600 super elementg agper elements that include
4 triangular shell elements. The first simulation uses delative and incremental updated
super elements (Iter—Incr). The tool indicator is used &ssify the super elements within a
distance of one radius of the tool from the tool surface it#eaitive treatment. The plastic
indicatoris also used. The second simulation uses all tgfiesatment (All type). A search
radius classifies the super elements within a distance oftiimes the tool radius from the
tool surface into the incremental treatment then the seadilus of the iterative treatment,
that is as large as one radius of the tool, is applied. Thdiplaslicator is active and a
geometrical indicator with half a degree threshold is useshift multi-incremental super
element into incremental super element.

The achievedz profile aty = 0 is used to compare the performance of the efficient
implicit simulations to the standard Newton simulatioreafine loop of the SPIF process,
the profiles are shown in Figure 3.14. Both simulations prieglivery good result, the error
in predicting the profile is limited to less thardQ:m by the Iter—Incr simulation while it is
less than 2:m by the second simulation. A slight deviation between tee-Incr and the
second simulation is observed because part of the FE mohlltsincrementally treated.

In both simulations, the indicators successfully classifg super elements into the
available update treatments, Figure 3.15. As the tool aabres the corner of the rectangular
shape, more plastic deformation is introduced; consedju@mincrease of the iterative ratio
is observed because the corners are stiffer (double claexhges) than the middle position
between two corners. The movement of the tool away from theesaesults in relaxing
(local springback) of a plastically deformed part and tlestuits in a drop of the iterative
ratio. This is observered for corners2and 4. Approaching corner 1 at the end of the tool
path shows a reduction in the iterative ratio because theméms been deformed plastically
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Figure 3.13: One loop tool path for SPIF simulation. The tpath length is 26 mm that
consists of G mm vertical movement followed by 260 mm in—plane movement.
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Figure 3.14: The numericadz profile aty = 0 at the end of one loop SPIF process (left) and the
error by the efficient implicit for two different settings.

before. The incremental ratio shows the opposite behauidhe Iter—Incr simulation since
the sum of both ratio has to be one. In the second simulatienincremental ratio starts
at low level because the rest of the super elements arefadast the multi-incremental
treatment. After that, it shows a significant increase hanoee of the multi-incremental
super elements are turned into the incremental treatmehthas lasts until increment 614
when all of the multi-incremental super elements are griyltianed into the incremental
treatment. Now, the super elements are either iterativeljpnerementally treated. The
number of multi-incremental super elements always deeshscause no criterion is used
in this simulation to classify an iterative or an increméigtéreated super element into
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Figure 3.15: Super element classifications evolution dpttie simulations into iterative (top left),
incremental (top right) and multi-incremental treatmegtt{om) .

multi-incremental treatment.

The CPU time required by the simulations is listed in Table Ihe standard Newton
simulation requires 5693 s (158 hr) to finish 965 load increments. The Iter—Incr simulatio
performs the same number of load increments in 3383094 hr) that is 168 times faster
than the standard Newton simulation and less thamfh error is observed in the predicted
xz profile. The simulation with all indicators active is slightaster, it is 172 times faster
than the standard simulation but with:h error.

3.3.2 Continuous bending under tension

In this test, a strip is deformed by continuous bending unelesion. The deformation is
introduced by the use of a roll set made of three identicéd wdl15 mm diameter. The rolls
are separated from each other by&im, in longitudinal direction. The strip dimensions
are 200x 20x 1 mn?. A 2 D model of the strip and the roll set is shown in Figure 3.16e
process is started by clamping both ends of the strip. Thesttip is bent by the movement
of the central (upper) roll 3 mm downward. Meanwhile, the two lower rolls are fixed in
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Table 3.5: The overall computing time and the correspondipgeding factor for one loop of
SPIF simulation.

Newton Iter—Incr  All type

CPU time (s) 5693.7 3393.2 3306.5
Speeding factor 1.00 1.68 1.72

First, bending by
~ centralroll 7
1 2

\ V Roll set moves to
the other end

Figure 3.16: 2 D presentation of the strip and the roll satfiooious bending under tension precess
description.

position, this is the first stage of the process. The procassepds by moving the roll set
to the opposite end of the strip (second stage). This prazesbe classified as multi—point
incremental forming.

Half of the strip, taking advantage of symmetry around timgltudinal axis, is modeled
by 4000 triangular shell elements. The material model isesgntative for mild steel.
The anisotropic yield behaviour of the material is modelgdhe Hill'48 criterion. The
isotropic nonlinear hardening is governed by the power law a

o = 494(¢ + 0.00007)°-248 (3.5)

wheres ande are the flow stress and the equivalent plastic strain relseéct The material
has a Young’s modulus of 200 GPa and Poisson’s ratiof 0

An efficient implicit simulation based on super element isf@ened and achieved
results are compared to the results of the standard Newtwuiaiion. For efficient implicit
simulation, the FE mesh is grouped into 1000 super elemewtdtey are classified into
iterative or incremental update treatment only (Iter-Jncfhe predicted vertical force at
the central roll, for instance, is plotted in Figure 3.17 €Btrip experiences bending by the
vertical movement of the upper roll combined with tensiosdese of the clamped ends.
For that, the force on the roll is increased monotonicallytie end of this stage. A global
plastic deformation is observed in the entire strip. Path@strip that are in the vicinity of
the rolls harden more than the rest of the strip that expedgmainly tension. By the roll
set horizontal movement, a new part of the strip is pladtiadforming and that reduces
the tension in the strip and consequently the predictedcadiforce at the upper roll. An
increase of the predicted force is observed because theiatétat is hardened at the lower
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Figure 3.17: Predicted vertical force at the central radfftjl and error by the Iter—Incr based
simulation (right).

right roll during the first stage passes the upper (centcdli)where it experiences a harder
material. The result achieved with Iter—Incr update sgateas a very good agreement with
the standard Newton result with less thaB% error

The Iter—Incr simulation has zero error at the first stagéeftimulation since all super
elements are treated iteratively. This iterative treathienecessary because of the global
plastic deformation. During the second stage, the tootimir is used with a search radius
that classifies super elements within 5 mm of any roll surfateiterative treatment. The
evolution of the iterative and the incremental ratio arevein Figure 3.18. This results in
almost constantvalue for the iterative and incrementad cdt0.224 and 07 76, respectively.
Of course, the positions of the iterative treated super efésare updated to be in the vicinity
of the rolls.

Based on this setting, the Iter—Incr implicit simulatiorfaster by 181 times than the
standard Newton implicit simulation. The Iter—Incr simtiiga requires 9072 s (252 hr)
to perform 1466 load increments, while the standard Newiomlgtion requires 16382 s
(4.55 hr) for the same number of increments.

3.4 Summary and conclusions

In Section 3.1, a super element based efficient implicit fimegration procedure is intro-
duced. AFE meshis substructured into super elements. 8hisst the assembly procedure
to be over all super elements instead of elements. It fatgkt partitioning a FE mesh into
different update frequencies: each iteration, incremedtraulti-increments. Also, it man-
ages and organizes the update of the tangent stiffnessxraattithe internal force vector
based on the super element classified treatment. A simplis tesed to investigate the in-
fluence of linearization of geometrical nonlinearity witlihe incremental treatment. Under
the condition of small incremental deformation, the incesntally linearized approach can
be considered valid.
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Figure 3.18: Super element evolution during the Iter—Imensation.

In Section 3.2, super elements are generically classifieddifferent update frequency
strategies (iterative, incremental or multi-incrementathis is performed by introducing
indicators that can define the super elements classificationto load increment. These
indicators are developed for localized plastic defornmati@he indicators are the current
tool location, plastic deformation in the previous loadgroent and the shape change in the
previous load increment. The tool indicator uses the gisatéa search radius to classify the
super elements based on the distance between the supeneberdehe tool surface. The
plastic deformation in the previous load increment is usatié plastic indicator in order to
turnincrementally treated super elements into iteratiwattent. The geometrical indicator
that is based on shape change classifies multi-incremeutat lements into incremental
treatment. In general, all indicators perform very good predlict the necessary change in
the super element treatments.

The super element based efficient implicit approach and éveldped indicators are
tested by simulating two practical applications in ordedemonstrate the capability of
speeding up the standard Newton implicit simulation, irtisecSection 3.3. It speeds up
one loop of SPIF simulation by.@8 times with error limited to @ xm in the predictecz
profile. A speeding factor of.81 is obtained in the simulation of the deformation of a strip
by continuous bending under tension. During the entire kitian, the error of predicting
the upper roll vertical force does not exceet%.

In this chapter, many simulations are performed by the sefmment based efficient
implicit approach and a speeding factor in the range 5#12.1 is achieved. However, two
simulations have to be performed, a standard and a supeeptdrased, in order to know
the speeding factor. This brings to attention the need fopdehthat predicts in advance
the expected speeding factor and to define the limits of ssgieading factor. This will be
the topic of the next chapter.






4. Analysis of the speeding factor

Up to this point, the super element efficient implicit proasgisuccessfully accelerates the
implicit simulation of localised deformation. The achidvepeeding up of the implicit
simulation is simply explained by reducing the cost of theré@ment. This is applied by
efficient update strategies that distinguish betweeniplast elastic deformation. A better
understanding of the computational performance of therselpenent implicit procedure is
motivated by several issues in Section 4.1. For instancbaage in the used number of
iterations or the combination of the update frequenciesheae an impact on the achieved
speeding of the standard implicit simulation. Clearlyyéhis need for an analytical formula
to explain an achieved speeding factor and even to predachiance the speeding factor for
an implicit simulation. Also, the analytical formula caropide a guideline for optimum
performance. An analytical formulafor the two domain agmtois presented in Section 4.2,
it focuses on the performance of the speeding factor for a BEelassembled of iterative
and incremental updated super elements. This analyticalfia is extended in Section 4.3
to include the influence of introducing a third domain that leav update frequency (multi-
incremental). The achieved speeding factor in one loopieffiemplicit simulation of SPIF
process is explained as demonstration in Section 4.4.

4.1 Motivation

The speeding factor is defined as the ratio of CPU time uselgdstandand Newton implicit
simulation to the efficient implicit simulation time. It isad to measure the advantage of
the efficient implicit approach in accelerating the staddarplicit simulation. It has to
be larger than one to be successful. The basic idea of théeeffimplicit procedure is to
reduce the cost of each iteration during the iterative pdace, as explained in Section 2.3.
The reduction in iteration cost is a result of reducing thetaaf building the system of
equations (BUILD) and updating the stresses based on thalatisplacement (UPDATE).
BUILD and UPDATE are two major costs of the iteration out a&th. The third major costis
solving the system of equations (SOLVE) and this part ofttion cost is not influenced
by the efficient implicit procedure. An example of these sastshown in Figure 2.14.

The reduction in the cost of BUILD and UPDATE is strongly irghced by the update
frequency ratios (iterative, incremental and multi-imoental) that are used in a FE analysis.
The iterative treatment of all super elements in a FE modlite in a speeding factor of
one, the implicit simulation in this case is not accelerateat a number of iterations within
one increment, the incremental update treatment perfottik[B and UPDATE only once
per increment (in the first iteration). The redundant coBUOILD and UPDATE for the
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rest of the iterations is saved. This results in a speedictgfdigher than one. Intuitively,
the multi-incremental treatment of the entire FE model hiasger impact on the speeding
factor than the incremental treatment. It has the same amElattegy as the incremental
method but extended for a number of increments where thenimental treatment forces the
update every increment. In the efficient implicit simulatithe FE models may consist of
the three types of updating strategy. The presence of tiaiite update strategy is essential
to model the plastic localised deformation

A different material model or element type may increase arelase the required CPU
time by BUILD and UPDATE and a new speeding factor will be aglhid. To conclude,
the speeding factor of an implicit simulation depends oress\factors that are the update
strategies ratio in a FE model, the frequency of performimg tipdate, the number of
iterations that are performed for a number of incrementstaadmajor cost ratios of the
Newton iteration. The dependency of the speeding factohesé factors motivates the
development of an analytical formula that estimates in adedhe speeding factor for a FE
model implicit simulation.

4.2 Two domain analytical formula

In this section, an analytical formula is introduced to peethe speeding factor that the
two domain efficient implicit method can achieve comparetht standard Newton im-
plicit simulation of a FE model. The basic idea of two domaiethod is introduced in
Section 2.3.2 and the super element based implementatiomplained in Section 3.1, The
two domain method splits a FE model into an iterative domaimpér elements) and an
incremental domain. An iterative updated domain is recomuted for plastic deformation
while an incremental domain is suitable for elastic defdfora The cost of one Newton
iteration (T) can be splitinto three major parts that ardldiug the system of equations (B),
sol\{ing the system of equations (S) and updating the ssdssged on actual displacement
(V)

T=B+S+U (4.1)

The cost ratio of the major parts is defined as the ratio of @actial cost (CPU time) to
the total time of the iteration
B+S+U
T
whereBr, Sy andUt are the cost ratio of BUILD, SOLVE and UPDATE respectively.

The cost of building the system of equations consists of tis¢ @f creating the tangent
stiffness matrix and the internal force vector. It can berdefias

=Br+Sr+Ur=1 4.2)

B = apBF + aeBF (4.3)

where BP and BE are the cost of building the entire system of equations asdéforms
plastically or elastically, respectivelyap and ag define the ratio of plastic and elastic
elements to the total number of elements in a FE mesh. Folifitagion, an assumption

1The first letter of the abbreviated terminology will be usedtie equations for convenience
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is made that an element is either plastically or elasticgfiorming. The cost of building
a system of equations for a plastically deforming model igdathan for an elastically
deforming model. The tangent stiffness matrix for eladliydaading or unloading elements
is based on the elasticity tensor while for plastically defing elements it is based on the
tensor of tangent elastoplastic moduli (Simo and Hughe@) R0t consists of the elasticity
tensor and an additional term that depends on the used alatevdel. The elastic/plastic
BUILD ratio g is defined as the ratio of the CPU cost of building an elast&tesy of
equations to the cost of building a plastic system of equatio

4.4

by substituting (4.4) into (4.3) antb + ag = 1, B can be presented as a functiongjt or
BE
1-—
M) BE (4.5)
s

Similarly, the cost of updating the stresses based on adislacement can be defined

B = (ap-}—(l—ap)ﬁ)BP:(

U = apUP + agUE (4.6)

The actual stresses are updated by an iterative procedatrestknown as return mapping
algorithm. Itfinds the balance between the elastic and tsiplstrains. Atthe beginning of
the procedure, a trial elastic stress estimation is madediuld if the stresses are developed
elastically or plastically based on a defined yield condifi®imo and Hughes, 2000). If the
yield condition is not violated the procedure finishes armgtress is updated elastically.
Otherwise, an iterative procedure starts to find the balartgeen the elastic and the plastic
strains and the corresponding stresses. The proceduref@amed for each integration
point. The cost of the iterative procedure is strongly delee on the complexity of the
material model. More time is required to perform a fully glasipdate of the stressés”
compared to a fully elastic update of the stredd€s The elastic/plastic UPDATE ratig

is defined as the ratio of the cost for updating the stresstbeialastic case to updating the
stresses for the plastic case

n=—5 (4.7)

then,U can be defined as

1—
agn + aE)UE (4.8)

n

Now, the cost of one increment of the two domain method campligisto three parts.
These parts are: the cost of the iterative domain, the coteoincremental domain and
the cost of solving the system of equations. The cost of #rative domain (CITER) is
the cost of building the system of equations and updatingtitesses of the iterative super
elements. Itis required for every iteration

U= (OCP+(1—OCP)77)UP=<

CITER = ajter(BY + UP)N (4.9)

2|n general, an element can have both elastic and plastigratten points
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where N is the number of iterations andier is the iterative ratio that is defined in Sec-
tion 3.2.1. The iterative ratio should approximately egbalratio of plastic elements to the
total elements in the FE modeb = ajier. With the use of (4.5) and (4.8), CITER becomes

B U

CITER alter(alter + (1= aner) p * ater + (1 — alter)ﬂ) N (4.10)
The cost of the incremental domain (CINCR) is the cost ofding the system of equations
and the update of the stresses (nonlinearly) only once abeganing of the increment.
Within the increment, the internal force vector is updaiedarly by the multiplication of
the super element tangent stiffness matrix and the supaesleincremental displacement
which requires negligible cost compared to an update bas#tbactual stresses. Assuming
that the incremental ratio (Section 3.2.1) is equal to thie &f elastic elements to the total
elements in the FE modek = ainer, CINCR equals

CINCR = amne(BE+UF)

pB nU
ay + 4.11
nCr(ﬂalncr —aner + 1 Nincr — Gincr + 1) ( )

The cost of solving the system of equations in the two domaathod is similar to the cost
in the standard Newton method because the size of the sy$tequations is not changed.
Now, the speeding factor (SPEED) is defined as the ratio oN@veton increment cost
to the cost of one increment of the two domain method
NT

SPEED= NSt CiTER T CINCR (4.12)

dividing over T presents a generalized model of SPEED thpedds on the major parts
cost ratio instead of the major parts absolute cost

N
SPEED= 4.13
NS + CITERT + CINCRT ( )
where
CITER Bt Ut
CITERr = =a + N 4.14
Iter(Ollter + (A —oaper)f  aier+ (1 — Ollter)77> ( )
CINCR S Bt nUt
CINCRT = =a + 4.15
T T Incr([mlncr —amer+1  Kainer — diner + 1) ( )

Special cases

Several special cases are introduced here to check theperfice of the analytical formula.
The first special case is to check the expected SPEERRKE(fteration is performed per incre-
ment Logically, the two domain method does not accelerate thedsird Newton implicit
simulation for one iteration per increment because the tarmain method advantage is to
save the cost of BUILD and UPDATE of the elastic part afterftist iteration. Substitute



4.2 Two domain analytical formula 49

N = 1in (4.13) and eithetijter = 1 — ainer in (4.14) orainer = 1 — ayter in (4.15) and
manipulate terms
1
aiter + (1 — alter)ﬂ) Br (alter +@1- alter)ﬁ)
atter + (1 — aier)n aiter + (1 — aiter) f

SPEED =

ST+UT<

1
- 1
Sr+ Br+ Ut
———

1

(4.16)

The second case fgerforming iterative update for all super elemenitdis is similar to the
standard Newton method, hence SPEED has to be one. Subsiitit= 0= CINCR =0
andajter = 1in (4.13)

N N
NS + N(Br+Ur) N(Sr+Br+Ur)
The third case islominating solver cosfThis means thasr ~ 1 = Bt ~ Ut ~ 0, thus

N 1
SPEED= — = — ~1 4.18
NS (4.18)
The fourth case isomplex material modetesulting in a negligible elastic/plastic BUILD
ratio # and elastic/plastic UPDATE ratig. f ~ n ~ 0 = CINCR = 0 and consequently
SPEED equals one. The fifth casenisgligible solver cost§ ~ 0 = Bt + Ut ~ 1,
SPEED becomes

SPEED=

1 (4.17)

N
PEED= 4.1
S CITERy + CINCRy (4.19)

if aiter = 1 = CINCRr = 0andCITER = N, SPEED becomes equal to one. If
amner = 1 = CITERt = 0, SPEED equals

N —_—
Br+Ur
—_———

1

This means that the two domain method can accelerate theéesthNewton simulation by
a factor equal to the number of iterations used per increment

SPEED= (4.20)

Typical case

For moderately localised forming implicit simulation, tdk factors of SPEED are involved.
SPEED is expected to be in the range of one to the number afites per incrementl.
This hints that a large number of iterations is preferred awehbetter SPEED. For this
reason, the limit of SPEED (4.13) &t — oo is calculated (I'Hépital’s rule is applied)

lim SPEED = lim N
N— 00 N-oo NS + CITERy 4+ CINCRy
1
) Sr + an ( Br + s 2
o ater + (L — aiter)f auter + (1 — aiter) 7
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Table 4.1: The settings for different case studies in théuewi@n of SPEED.

Qlter B N St
Casel \variable 1.0 5 variable  Figure 4.1
Case 2 0.1 variable 5 variable  Figure 4.2
Case 3 0.1 1.0 variable variable Figure 4.3
Case 4 0.1 1.0 00 0.1 Figure 4.4
Case 5 variable 1.0 00 variable  Figure 4.5
Case 6 0.1 variable oo variable  Figure 4.6

The upper limit of SPEED is a function of the major parts ratierative ratio, elastic/plastic
BUILD ratio g and elastic/plastic UPDATE ratig. It is independent of CINCR A
simplified analytical formula of SPEED can be introducedir¢4.13) by assuming that

p=nas

N (alter +(1- alter)ﬁ)

SPEED= (4.22)
(1 — aier)p + Najter + ﬁST(N(l — Olter) + Gliter — 1)
and consequently a simplified upper limit of SPEED becomes
. aiter + (1 — auter) f
lim SPEED= 4.23
N—o0 atter + (1 — aier) f St ( )

The simplified SPEED model is used for further investigagistudying the influence
of the iterative ratiauter, the elastic/plastic BUILD ratigg and the number of iterations
N on the two domain SPEED for the entire range of the partial 6cbSOLVE Sr. The
settings of the studied cases are summarized in Table 4. SPEED curves for different
iterative ratioajer values are shown in Figure 4.1. An upper limit and a lower i
achieved by ter = 0 andaer = 1.0, respectively. The lower limit is not influenced By
because the entire system is updated each iteratiormpdth= 1.0. Forajer < 1.0, SPEED
performs better at lovr that corresponds to high value Bf andUy. The performance of
SPEED is enhanced by reducings;. The best achieved SPEED isogt, = O that is fully
incremental treatment of the entire FE model. The influerieaig on SPEED is reduced
at higherSr e.g. atSr = 0.1 the increase afjier from 0.1 to 0.5 reduces SPEED by 45 %
while atSr = 0.5 it reduces SPEED only by 20 %.

The influence of the elastic/plastic BUILD ratibon SPEED curves is plotted in Fig-
ure 4.2. A lower limit is observed g8 = 0 because SPEED becomes dominant by the
iterative cost while an upper limit is observedsat= 1.0 because the elastic cost of BUILD
and UPDATE is treated as expensive as the plastic cost (ireplesmaterial model). The
same trend of SPEED is observed as in Figure 4.1. The incoégsenhances the achieved
SPEED. The influence ¢f on SPEED is larger at lor than at highSy.
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Figure 4.1: SPEED curves for different iterative ratio vediN = 5 andp = 1.0.

Figure 4.2: SPEED curves for different values of the elgsléstic BUILD ratiof, N = 5 and

Olter = 0.1.
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The achieved SPEED curves for different number of iteratNdare plotted in Figure 4.3.
The lower limit of SPEED is drawn b = 1. Increasingsr reduces SPEED. The influence
of N on SPEED is higher at lo®;. The observed trend of SPEED is similar to the observed
trendin Figure 4.1. Anincrease dfresults in additional increase of SPEED which is more
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—N=10

Figure 4.3: SPEED curves evolution with the used numbereséitons,f = 1.0 andajier = 0.1.

significant at a lower value dff compared to the increase of SPEED at a higher valié. of
To emphasize this issue, SPEED is plotted veisus Figure 4.4. SPEED increases with
a steep slope that drastically decreases with incredsingihe upper limit of SPEED, the
horizontal dashed line, is found by substitutig= 0.1, ajter = 0.1 andp = 1.0 in (4.23)
yielding a value of 326.

The simplified upper limit, defined in (4.23), dependsg;, # andSr. In Figure 4.5,
the upper limit curves are grouped betwerig, = 1 (lower) andajier = 0 (upper). The
upper limit of aier = 0 goes to infinity atSr = 0 as result of dividing by zero in (4.23).
Again, the upper limit of SPEED decreases by increaSngAt the sameSy, the upper
limit is shifted up by decreasingr. Increasinguier has more significant influence in
shifting the upper limit down at lov&r than at highSy

The influence of elastic/plastic BUILD ratjp on the simplified SPEED upper limit is
plottedin Figure 4.6. The curves are grouped betwgen0 (lower limit) andg = 1 (upper
limit). A decrease of the curves is observed with increaSingp has larger influence on
the curves at lower value @ compared to high value &, which is typical behavior.

4.3 Three domain analytical formula

The three domain efficient implicit method has an advantage the two domain efficient

implicit method. This advantage is adding an additionalatpdrequency strategy, the
multi-incremental strategy, to the iterative and the inceatal update strategy. The multi-
incremental strategy has a similar update procedure asnttrernental update strategy
except it is extended over a number of increments (Secti8r8R. The cost of the three
domain method for the number of iterations that covers a rarmmbincrements can be split
into four parts. These parts are the cost of solving the estistem of equations for all
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Figure 4.4: SPEED curve evolution with the used number oéitens,p = 1.0, St = 0.1 and
ajter = 0.1, the upper limit is found alN — oo.

Iter —

=0.05

Iter =0.2 1
=05

=10 |

Iter —

T Clter

- —a
Iter

Figure 4.5: Simplified SPEED upper limit curves evolutionddferent iterative ratio af = 1.0
andN — oo.

iterations, BUILD and UPDATE of the iterative domain (supé&ments) for all iterations,
BUILD and UPDATE of the incremental domain that is perforneedry increment and the
BUILD and UPDATE of the multi-incremental domain that is figmed once for a number
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Figure 4.6: Simplified SPEED upper limit curves evolution éifferent elastic/plastic BUILD
ratio # atajier = 0.1 andN — oo.

of increments.
The speed factor (SPEED) is defined as the ratio of the coshéostandard Newton
method to the cost of the three domain method for the same auofliterations

N
SPEED= (4.24)
NS + CITERT + CINCRT + CMINCRT
where B U
T T
CITER = N 4.25
R (ap+ A—arf | art (1—ap>n) et (4.29)
ﬁBT 77UT N aincr
CINCRT = 4.26
T <ﬂaE—aE+1+naE—aE+1) Nincr ( )
B N
CMINCRy = ( pBr U ) Mincr (4.27)
pag—ag+1  nog—oae+1/ Nminer

whereN is the number of iterations that spans more than one loadtiment.amincr defines
the ratio of the multi-incremental super elements to thal tiper elements in the FE model.
The update is performed for the incremental and the mudtiemental super elements after
Nincr and Nwviner iterations, respectively. It is assumed in (4.24) that theation of the
Newton iteration cost is negligible. In (4.25), the itevatiratio aier can substitute the
plastic ratioap. The elastic ratiag in (4.26) and (4.27) consists of both the incremental
and multi-incremental ratiag = ainer + aminer- 1t is conditionally required thalncr and
Nmincr are smaller or equal tdl and Ny is smaller or equal tdNmincr

For simplicity, the elastic/plastic BUILD ratif and the elastic/plastic UPDATE ratip
can be assumed equal. This simplifies CITERINCRt and CMINCRr and consequently
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the analytical formula of SPEED for the three domain method

1-5
CITERy = N 4.28
il (aner T (A= aneoﬁ) ater (4.28)
_ (1-35r)p N aincr
CINCRy = (ﬁaE o 1) N (4.29)
_ (1-Snp N aMincr
CMINCRy = (ﬂaE s 1) N (4.30)

The analytical formula of the two domain method is a spedialecof the three domain
method. The three domain model is reduced to the two domadehibit uses no multi-
incremental super elements or it uses the same number afiies to update the incre-
mental and multi-incremental super elements. Substiutiancr = 0 in (4.27) results in
CMINCRT = 0. The elastic ratio becomes = ajner = 1 — ajter that reduces SPEED
model (4.24) to the two domain SPEED model that is presemtdd.i3). The second
case is applying the same number of iteratidlasfor updating the incremental and multi-
incremental super elements. This is equivalent to (4.18) thie use otxe = aincr. The
same implies to the simplified three domain SPEED.

Another special case is an elastic domain made entirely dfi4+maremental or in-
cremental updated super elements. The incremental sugraest requires more update
compared to the multi-incremental super elements and #mtlts in a higher SPEED
curve forag = aminer thanag = ainer, Figure 4.7. The demonstration is carried with
aiter = ap = 0.25,N = Nyiner = 20, Niner = 5 andpg = # = 1. Four UPDATE steps are
performed in case afg = ajner While only one is performed in case @f = aminer- The
achieved SPEED curve foie = amincr is the same like the SPEED curve of two domain
method forN = 20. The advantage of less update is more beneficial atfow S

In the following case, the influence dfivincr 0N SPEED is investigated on a FE model
that has all types of update strategies. The increaby@f; reduces the number of updates
within a number of iteration®N/Nmincr. This reduces the contribution of CMINGRN
the three domain method in the denominator in (4.24), riegpib an increase of SPEED.
SPEED curves are plotted in Figure 4.8 for a model with theo¥ahg settings: ajer =
ap = 0.1, ainer = aminer = 0.45, N = 100, Niner = 5 andp = n = 1. Several values
of Nminer are used 510, 20, 100 iterations that correspond to,2M, 5, 1 updates of the
multi-incremental super elements. The increasdlgiihcr shifts up the SPEED curve. The
lower SPEED curve represents the two domain SPEED curve sirgimilar number of
iterations are used for both the incremental and the modtiemental super elements. The
upper SPEED curve is a result of updating the super elemahtoace for 100 iterations.
As expected, the performance of the SPEED curves is bet@w&@r and it decreases with
increasing $ until it reaches one at{S= 1.

4.4 Case study

Inthis section, the analytically derived SPEED curves atielated for a two domain method.
The simulation of one loop of a SPIF process, introduced iti®e 3.3.1, is used for the
validation. The numerical model is made of 6400 shell elesieased on discrete Kirchhoff
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Figure 4.7: SPEED curves evolution for two special casesastie ratioag. ajter = ap = 0.25,
N = Nmincr = 20, Njpgr =5andf =n =1
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Figure 4.8: SPEED curves evolution for differéyncr. ajier = ap = 0.1, N = 100,Njper = 5
andﬁ =n= 1, Alncr = O.45,aM|ncr = 045

triangle element. The material model is introduced in $&c#.2.1. The numerical data is
extracted out of the standard Newton implicit simulatioruring the simulation, the cost
of the last iteration for each increment is recorded. Thatten cost and the corresponding
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Figure 4.9: The last iteration cost of each increment (l&f) the major parts ratio (right). The
data is related to the one loop standard simulation for SRIEgSS.

Table 4.2: CPU time for BUILD and UPDATE.

Full plastic  Full elastic SPIF

BUILD (s) 1.56 1.18 1.26 B =0.76
UPDATE (s) 2.24 0.73 0.77 #=0.33

major parts ratio (B, Ut and §) are plotted in Figure 4.9. The iteration costs on average
2.27 s. the averaged major parts ratig Bl and § are 0555, 0.339 and 0106 respectively.
An unexpected slight increase of BUILD cost is observedriorements 89127.

In order to define the elastic/plastic BUILD raffoand elastic/plastic UPDATE ratig
a stretching test is performed on the same FE model. Thekingtmechanism introduces
a global uniform deformation in the blank (FE model) thatires fully plastic deformation
for all integration points in the FE model. The required CRuktto perform B and U for
fully plastic deformation are.b6 s and 24 s. The cost of a completely elastic deformation
BE and UF are 118 s and (077 s. the elastic/plastic BUILD rati@ and elastic/plastic
UPDATE ratioz are calculated by (4.4) and (4.7) that result@is= 0.76 andy = 0.33,
the related data is summarized in Table 4.2. In SPIF sinoriathe cost of BUILD and
UPDATE are 7% and 5 % larger than the corresponding elasst cbhis indicates that
only a small part of the model is deforming plastically.

The number of iterations per increment is also recordednduttie standard Newton
simulation, Figure 4.10. Almost half of the increments rieggl 3 iterations while the
second half requires 2 iterations. Some increments reqtittee initial stage and when the
tool approaches the corners 6 iterations. The plastic and the elastic ratio are assumed t
be equal to the iterative and the incremental ratio that Aeeved in the Iter—Incr super
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Figure 4.10: The iteration evolution of the standard sirtiaia(left) and the super element clas-
sification for the Iter—Incr simulation (right).

element based simulation of the one loop SPIF process. Tdiatmn of the iterative and
the incremental ratio is explained in Section 3.3.1 andgtbagain here for convenience in
Figure 4.10.

Now, all the variations of the two domain analytical form@&EED are available.
The variations are substituted in (4.13) and the expectetiycal SPEED is plotted in
Figure 4.11. Despite the observation of almost constanbinprts ratio, the analytical
predicted SPEED is oscillatory. Some peaks are observe®EE®D that coincides with
the large number of iterations for those increments. Forrést of the increments, the
range of SPEED variations corresponds te3dterations. SPEED is inversely proportional
to the iterative ratio, the increase @jier results in a decrease in SPEED and vice versa.
The averaged analytical SPEED i$4. The practically observed SPEED i$8 that is
calculated by dividing the overall CPU time of the standaesMtbn implicit simulation over
the super element based simulation CPU time. The analfticalula of SPEED has a very
good agreement with the practically observed SPEED. THidatas the model and it can
predictin advance the expected acceleration of an imgiititlation by the implementation
of the super element based efficient implicit approach.

The cost of BUILD and UPDATE is influenced by the element typhis has conse-
guently an effect on the speeding factor. To demonstrasettinie one loop SPIF simulation
is performed again but with shell elements based on dissheter triangle DST (Batoz and
Lardeur, 1989) instead of discrete Kirchhoff triangle DKBafozet al., 1980). Both ele-
ments have 6 degrees of freedom per node. The DST elemertittyglouples the lateral
displacement with the rotation of a midsurface-normal ligeransverse shear stiffness of
the material, while in the DKT element it is explicitly coepl by enforcing zero transverse
shear strain at selected locations (Ceblkl., 2002).

A slightly larger iterative ratio is observed in the simideit based on the DST element.
This indicates that almost the same speeding facté6Bjis expected but a higher speeding
factor of 189 is achieved. The computing time of the simulations igtlsih Table 4.3.
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Figure 4.11: The two domain analytical SPEED.

Table 4.3: The overall computing time and the correspondipgeding factor for one loop of
SPIF simulation.

Newtonpkt Iter-Incrpkt Newtonpst  Iter—IncrpsTt

CPU time (s) 5693.7 3393.2 8425.4 4456.8
Speeding factor 1.00 1.68 1.00 1.89

Almost the same number of iterations is required by both ftians but the DST based
simulation requires more CPU time to complete the simutetiompared to the DKT sim-
ulation CPU time. In DST based simulation, BUILD and UPDAHESuire 16 and 133s
while they require 113 and 074 s in the DKT based simulation, respectively. A comparison
of the major iteration cost for both simulations is shownigufe 4.12. Solving the system
of equations requires the same CPU time in both simulati@wmsidering the cost ratio
perspective, an increase is observed in UPDATE cost ratithi® DST simulation com-
pared to the DKT ratio while a decrease is observed in BUILD @OLVE. This results in

an overall increase of the achieved SPEED for the DST basadation compared to the
achieved SPEED for the DKT based simulation
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Figure 4.12: A comparison of the major iteration cost (lefid cost ratio (right) between the
DKT based simulation and the DST based simulation. Thetseatg presented for
the first iteration of increment number 100 in the standarditda simulation.

4.5 Summary and conclusions

The speed factor (SPEED) measures the efficiency of the siperent based efficient
implicit approach in accelerating the standard impliaihslation of localised deformation
processes. SPEED is defined as the CPU time cost of one Nemdrmient to the cost
of one increment of the efficient implicit time integratioropedure. SPEED is influenced
by several factors. These factors are the number of perfditaeations, the combination
of the different update strategy ratios, the used updattesfies and the major parts cost
of the Newton iteration (BUILD, UPDATE and SOLVE). The majmarts ratio of Newton
iteration depends on the material model and the element type

An analytical formula that combines all of these factors évaloped in order to un-
derstand the computational performance of the efficientiagitsimulation for localised
deformation. In Section 4.2, The two domain analytical folaof SPEED is developed.
The incremental cost of the two domain efficient implicit hmed can be split into three
parts: the cost of the iterative domain, the cost of solviregentire system of equations and
the cost of the incremental domain. The cost of solving tiséesy of equations and the iter-
ative domain are linearly scaled by the number of iteratidriee incremental domain cost
is consumed once per increment. The iterative and the inremémhdomain costs are func-
tions of the iterative ratio, BUILD and UPDATE ratio and tHasic/plastic ratiog ands.
SPEED is enhanced by reducing either the SOLVE ratio or #rativve ratio. Also, SPEED
performs better with a larger number of iterations or by @asing the elastic/plastic ratios.
A simplified upper limit of SPEED is found to be inversely posfional to the SOLVE ratio
and the iterative ratio. Theoretically, the SPEED can gafnity at negligible SOLVE
ratio combined with zero iterative ratio.

The analytical formula of SPEED is extended in order to pettie efficiency of the
three domain approach (Section 4.3). Now, SPEED is defindtleagatio of cost for a
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number of increments with the standard Newton method to tis¢ af the three domain
method for the same number of increments. The cost for theetomain method can
be split into four parts: the cost for the iterative domaime incremental domain, the
multi-incremental domain and the cost of solving the ergiystem of equations. Solving
the system of equations and updating the iterative doma&rparformed every iteration.
The incremental domain is updated every increment whilerthki-incremental domain is
updated only once. The SPEED curve of the three domain méshagher than the curve
of the two domain method, it accelerates the implicit methuate than the two domain
method for the same number of increments. The three domgdmitdim performance has
similar response as the two domain algorithm regardingtérative ratio, the SOLVE ratio
and the elastic/plastic ratjg.

A demonstrative case study is analyzed in Section 4.4. Tloedwmain analytical
formula of SPEED is applied to the implicit simulation of fl@ming one loop of SPIF
process. The two domain analytical formula of SPEED has g geod correspondence
with the practically observed speed factor. The averagdigiesd SPEED for the simulation
is 1.64 while the two domain method practically accelerates imeilsition by 168. This
verifies that the model is robust and it can predict in advdaheeexpected SPEED of an
implicit simulation for localised deformation.

It becomes clear that the efficient implicit method is sUialor intermediate scale
simulation. The SOLVE cost is a crucial factor regarding dithieved SPEED. For this
reason, numerical techniques are applied in the followhmeypter in order to keep SOLVE
ratio as low as possible during the implicit simulation. Jill enhance the achieved speed
factor.






5. Static condensation and remeshing

The performance of the efficient implicit method can be ewrkdrby coupling the method
with other numerical techniques. In this chapter, two nuoa¢techniques are emphasized.
The first technique is the static condensation (Section &.i@duces the size of the system
of equations and that may accelerate the computation by irglthe time consumed by the
solver. In Section 5.2, the h-adaptivity is investigatetkeleps the FE mesh as small and
efficient as possible. One level of refining and coarsenirgldied for the SPIF process
simulation.

5.1 Static condensation

Static condensation is used to reduce the size of the sydtequations. This application
had a major advantage in structural engineering, spedatianalyzing large structures
that were often beyond the capacity of the computers in tls& paubstructuring (super
element) is a way to organize the static condensation oélkngar systems arising from
the discretization of partial differential equations (8m@t al., 1996). Introducing the super
element discretization of a FE model in Section 3.1 provitiesbackground to statically
condense the super elements. For the incrementally and eltieintrementally updated
strategies, the tangent stiffness matrix is constant foxeeement or anumber of increments.
The internal force vector is linearly updated by the muitiation of the tangent stiffness
matrix and the incremental displacement. This pseudaiitreatment is applied after the
nonlinear update of the geometrical and the material nealities in the previous steps. The
incremental and the multi-incremental super elements aitalde for static condensation
because of the pseudo-linear treatment. The iterativetapsti@tegy forces a full nonlinear
Newton update every iteration and that does not fit with thedrity assumption of static
condensation.

The super element degrees of freedom can be classified ikteniaOFs and slave
DOFs as shown in Figure 5.1. For pseudo-linear super elesytiietmaster DOF is defined
as the external DOF that may be connected to another supeeetand the slave DOF is
an internal DOF that belongs only to one super element. AlIFS@or the iterative treated
super element are master DOF. The pseudo-linear super miéamgent stiffness matrix,
incremental displacement and internal force vector arerabfed based on the master—slave
classification as
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Figure 5.1: The classification of the super element DOFsnmaster and slave DOFs.

|: Kss Ksm i|Super( ds )Superz( fg )Super (5 1)
Kms Kmm dm fm .

Super dSuper Super
Kint fint

where the subscriptm and s refer to master and slave DOpsgatly. The slave (internal)
DOFs are statically condensed to their master (externaf 0O

dSuper (KSUPGS 1(fSuper_ KSuper Supel} (5.2)

Such that the condensed form becomes

Super,c Super Super,c
Kint m fint (5.3)
where
Super,c__ Super Super Super-1 Super
Kt Po=Km (Kss ™)1 K (5.4)
Super,c Super Super Super-1 ¢ Super
fint =fm " — Kms  (Kss" )™ fs (5.5)

Now, the condensed global tangent stiffness matrix is alskzhof the condensed pseudo-
linear super elements and the iterative super elementstastiffness matrix

Glob, Super Super,c
K|nto = Z Krntr +Z Krntr (5-6)

where IT and PL are the number of the iterative super elenartshe pseudo-linear super
elements, respectively. Similarly, the condensed glafternal force vector is assembled.

Glob, Super Super,c
flnto = Z f|nt| +Z flntr (5-7)
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The size of the global condensed system of equations iseanth#in the original size
of the global system of equations (non-condensed). Thierdifice in size is a result of
condensing the internal DOFs of the pseudo-linear supenasits, both the incremental
and multi-incremental super elements. On the other haredylbbal condensed system of
equations is denser than the original system of equatiogact8onized with the update
strategy, the static condensation procedure is performbcbmce for the incremental super
element and once for a number of increments for the multiemental super element. This
is performed after the nonlinear update of the tangent&t# matrix and the internal force
vector. After the convergence of the load increment, theigsdinear super element slave
DOFs are evaluated by (5.2).

The advantage of applying the static condensation is toceethe time required for
solving the system of equations. As discussed previousyyto domain method orthe three
domain method has no influence on the cost of solving the systeequations (SOLVE)
because all DOFs are retained. Keeping in mind that soliegsystem of equations is
performed every iteration and considering the two domainhme that is introduced in
Section 2.3.2 and the related analytical formula preseint&dction 4.2, the condensation
procedure becomes an additional cost to the incrementabédlse two domain method.
The analytical formula is extended to include the condéosatost and the new cost of
solving the condensed system of equations as

NT

SPEER = 5.8
R CON+ N& +CITER+ CINCR (5-8)
[

NS

where CON is the cost of performing the condensation &nid the cost ratio of solving
the condensed system of equations. The condensation absharcost of solving the
condensed system of equations every iteration replacegi®tsolving the original system
of equations every iteration. The cost of building the systd equations and updating the
stresses of the iterative and the incremental part of the BEet(CITER, CINCR) are
independent of the used strategy to solve the system ofiegsatondensed or not. In
order to benefit from solving a condensed system, the sum rdergsation cost and the
cost of solving the condensed system of equations has t@egélan the cost of solving the
original system of equations
CON+ NS < NS (5.9

Thisresultsin a smaller overallincremental cost (the deinatorin (5.8)), and thatincreases
the achieved SPEED. Otherwise, if the resulting cost of tralensation and solving the
condensed system is larger than solving the original sys&t&ED is reduced compared to
the non-condensed solution method. This can be a resuk tdithe cost of the condensation
procedure or an increase in the cost of solving the condesys#dm of equations because
it is less sparse (denser).

Similarly, the three domain analytical formula of SPEED barextended to include the
influence of the condensation. It becomes

NT
SPEED= (5.10)

N CON N CON
Incr | MIner + NS, +CITER + CINCR + CMINCR
Nlncr NMlncr

NS
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where CONh¢r and CONyincr are the cost of condensing the incremental super elemeahts an
the multi-incremental super elements, respectively. Boéhscaled with the same ratio as
CINCR and CMINCR, (4.26)and (4.27) respectively. The mimtremental update strategy
has lower update frequency compared to the incrementaltemiategy and definitely
the condensation is performed in a lower frequency for mnttremental super elements
compared to the incrementally updated super elements.

The condensation is performed based on the LU-factorizaiethod (Kreyszig, 1993).
It is a relatively less expensive method to solve a systengafitons compared to the
standard Gauss elimination. The system mat#ixié decomposed into an upper triangular
matrix (U) and a lower triangular matrix with diagonal of ones) @s

Ax=LUx=Ly=b (5.11)

wherex is the unknown vector solved froldx = y and b is the right-hand side. Using
the LU-factorization method to derivé s2®)1K SuP®'is more efficient than determining

(K SUP)-1 explicitly if the number of the slaves is larger than the nemdf masters. Because

KSuPeTis a symmetric positive definite matrix, it is found that= LT without imposing
conditions on the main diagonal. This special case of thdadterization method is known

as Cholesky’s method.

Actually, foU"P®"and each column dfSeP® can be used as the right-hand side vector b.

By applying this, theKSeP®)L KSUPe and (KSuP®)-1 15UP are found. These operations
are performed using Sun Performance Libfatypackage that is developed for sparse linear
systems of equations.

5.1.1 Case study

In this case study, an implicit simulation of drawing a limeai blank by a SPIF process is
simulated. Aninitially flat numerical blank of 300300x 1.2 mn? is discretized by 14400
discrete shear triangular shell elements. Through thé&miaiss of the element 5 integration
points are used (in total 15 per element). The drawn line istidaep and 260 mm long. Itis
parallel to the blank edge and 20 mm away from the edge. Tinkleldges are clamped. The
line is drawn by an analytical spherical tool with a 20 mm déden. The focus of this case
study is to investigate the computational performance efcbndensation procedure. For
that, a reference simulation is performed by the standamtdlemethod. The two domain
method is used as efficient approach to accelerate the sthsidaulation. The condensed
two domain approach (Condensed) performance is compartitetoon-condensed two
domain method (Original).

The standard Newton implicit simulation performs 352 loackéments and it requires
on average 3 iterations per increment to converge and 188karches are performed in
total. The overall CPU time for this simulation is 6574 8@ hrs). The averaged cost for a
Newton iteration is 39 s that is split into 4% %, 12 % and 384 % for building the system
of equations, solving it and updating the stresses res@dytiFor the two domain method, 4
super elements are classified for the iterative updateglyaind the rest of the super elements
are classified for the incremental update strategy. Diffes@&zes of the super element are
considered that are, 46, 36, 64, 100, 144 and 400 elements per super element. They are
referred as S4S16 S36 S64 S10Q S144 and S400, respectively. This corresponds to
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Table 5.1: The performance of the original and the condenhsediomain simulations.

ajier Condensed Original Condensed  Original
CPU(s) CPU(s) SPEED  SPEED

S4 0.001 2530 2499 2.55 2.57
S16 0.004 2561 2463 251 261

S36 0.010 2733 2545 2.36 2.53
S64 0.018 2943 2583 2.19 2.49
S100 0.028 3296 2625 1.95 2.45
S144 0.040 3824 2677 1.68 241
S400 0.111 8481 2971 0.76 2.16

group the FE mesh into 360800, 400, 225, 144 and 36 super elements. Constraining the
iterative domain to include 4 super elements influences thégaed accuracy, but in this
case study that is not of interest here.

The main focus is to investigate the achieved SPEED for thel€osed and the Original
two domain method. The achieved SPEED for different supamehts is summarized in
Table 5.1. As expected, the increase of the super elementeszilts in a decrease of the
achieved SPEED for both two domain methods because of tlespamding increase in
the iterative ratio (always 4 super elements are iteratitrelated). An unexpected increase
of SPEED is observed in the Original method at S16. In gentralOriginal two domain
method has a higher achieved SPEED than the Condensed tvardorethod except at S4
where they are almost equal. The best achieved SPEEBTS@r S4 by the Original two
domain method. The lowest performance of the Original m&tBBEED is observed for
S400 anditis 216. Inthe Condensed two domain method, the increase of tex stement
size results in more significant decrease of the achievedE®PEt S400, the Condensed
two domain SPEED is.@6 (less than one) that violates the golden rule of the efficie
implicit simulation method. At this setting, the condensgd domain method slows down
the implicit simulation instead of accelerating it.

The main difference between the presented two domain metieogerforming the
static condensation or not. As explained, the SPEED pedooa is influenced by the
condensation cost and the cost of solving the condenseehsydtequations. The cost of
condensation and the cost of solving the condensed systequations for different super
elements are shown in Figure 5.2. For S400, the static caadiem results in an increase
of solver cost almost by 300%. The condensation cost is 5stithe cost of solving the
original system of equations (strange!). This explainstihd achieved SPEED .({®),
slowing the standard Newton implicit simulation. In casesd#4 and S100, the cost of
solving the condensed system of equations shows a sligieiaee or is almost equal to the
cost of solving the original system of equations. Becaush@fcost of the condensation
of these super element sizes, the achieved SPEED for theeised method is going to be
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Figure 5.2: The cost of condensing (left) and solving (ighé system of equations for different
super element sizes.

less than the original SPEED.

A reduction in the cost of solving the condensed system o&ggus is observed for
S4-100. A better SPEED can be expected for these settings, tNe condensation cost
determines the increase or the decrease of the achievedCsedifpared to the Original
SPEED. Checking (5.9), the sum of the condensation cost@mohg of the condensed
system of equations for all settings is larger than the timg@ired to solve the original system
of equations for 3 iterations, as shown in Figure 5.3. To tmhe: the static condensation
is efficient only if the cost of solving the condensed set afapns is significantly reduced
and it has to compensate for the cost of the condensationu3éef condensation has to
be investigated to avoid a lower achieved SPEED. The predetdscription of the static
condensation is deficient.

5.2 Adaptive remeshing

The crucial issue in single point incremental forming siatign is performing thousands of
load increments on a relatively fine FE mesh. The small ragfitise forming tool requires
a fine mesh for the small contact area but is not required foettiire workpiece. The small
contact area travels all over the workpiece in order to ishtice the incremental deformation
(it is a special feature of SPIF process). Basically, the Filehis made fine enough to
capture the introduced deformation despite the knowledgheocurrent location of the
forming tool. This is an inefficient modelling descriptiohtbe workpiece. Alternatively,
a relatively coarse FE model for the entire model combinet wiinall traveling fine mesh
would be more efficient.

The h-adaptivity method fits the efficient modelling needss based on adapting the
number of grid points and changing the mesh connectivityefitaet al., 1998). Grid points
are added to areas where more accuracy is demanded and i chabetted in areas where
the solution is accurate enough. In SPIF simulations, thddptivity method is used to add
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Figure 5.3: The cost of condensing and solving the systemuatsons for different super element
sizes. For the Original method CON O and& = S.

grid points in the small area of contact. As the tool movesiengwid points are added to
the FE model in the vicinity of the tool. The grid points addedhe former tool location

are deleted. This simulates the movement of a fine mesh eratiédd relatively coarse
FE model.

Within this brief investigation, one level of h-adaptivisiimplemented in the in-house
FE package DiekA. Actually, the h-adaptivity refinementqadure of triangular shell ele-
ments by Meinders (2000) is extended by one level of coangeidepending on a particular
remeshing criterion, a group of elements is nominated fiimeenent. The neighboring ele-
ments of these nominated group of elements have high patemkie refined in the following
load increments. Both the nominated elements and theihbeigng are called mother el-
ements and refined once. Each mother element is divided autoefiqual elements, the
newly created elements are called refined elements. Torpeeseesh compatibility, each
neighbor element of the mother elements is split into twoa¢glements. Any two split
elements born out of the same mother element can be uniteckindd into four refined
elements for the nextload increments, if itis required. Meghile, the coarsening algorithm
performs only on the refined and split elements. It degeasttae previous connectivity in
a reverse order. This limits the growth of number of elemémtsveen the initial number
of elements (lower limit) and refinement of the entire FE mamee (upper limit). An
example for element generation and degeneration is showigure 5.4.

The refinement is performed when a specified error exceedseahtibld. An error
indicator is used instead of an error estimator since it imgotationally cheaper (Huerta
et al, 1998). Particularly, the geometrical error indicator eleyped by Bonet (1994) is
used. It measures the variation of the geometry within tizalal A set of tangent axes
is determined for each element and it is constant within feenent. The variation of
these sets of tangents from one element to its neighboramezits indicates the variation
of the geometry which cannot be represented by the facetezlemTherefore, a nodal
averaging technique is used to quantify this variation.h# variation within a group of
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Figure 5.4: The description of the remeshing algorithm. Tigal mesh (left) that is partially
refined (middle). The coarsening of lower left part and tHeesnent of the upper
right of the FE model (right).

elements exceeds a threshold, that group of elements igdefidn the other hand, if the
variation within a group of refined elements is decreasedrsaming takes place on that
group regenerating the mother elements.

Mapping

When a new grid connectivity is created, the state variahée® to transfer from the old
mesh to the new mesh. There are several approaches. OnadpEasing the old nodal
value to evaluate the new nodal value, then determiningtétte gariables at the integration
points (Meinders, 2000). Another approach is to use a pachbwvery, that depends on
selecting specific locations within a group of elementsating a smoothed field out of it
and evaluate the new data. For instance, a bi-linear smadidle requires at least four
points to be selected within the group of elements. Furtkeéaits on patch recovery using
plane elements can be found in (Coetkal, 2002). The chosen approach applies a least
square approximation. The method fits a linear field based analable integration points
within a group of elements, not on selected points only. Bbation of the integration points
and their values are used to create the linear field, therottaibn of the new integration
point is used to determine its value.

Regardless of the used approach for mapping, data transfdicts the exact value
for the state variables when it maps mother element intd si@iments or refined elements.
However, it either overestimates or underestimates thesabwe for the following remeshing
cases: splitinto refined, refined into split, refined into hewiand splitinto mother. The error
is introduced because of fitting piecewise linear fields orte linear field. The least square
method is the optimum approach, in the sense of accuracyniitmzes the error during data
transfer because of the use of all available integrationtg@nd it is not computationally
expensive compared to the other approaches.

The correctness of implementing the least square methawé@ping on one level of
remeshing has to be validated before simulating the SPIEgss For that purpose, an
initial linear field for the equivalent plastic strain is prgibed for a FE strip model. The
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Figure 5.6: Tool path description of pyramidal shape SPteess.

strip experiences 600 remeshing combinations. Theoligtiaad numerically within the
machine accuracy, the linear field must remain the same. i hishieved in the one level
of remeshing implementation test as shown in Figure 5.5.

5.2.1 Case study

A single point incremental forming process of &4fyramidal shape is simulated to verify
whether the one level remeshing technique leads to signtfi€B&U time reduction. The 17
mm deep pyramid is made out of a 10000 x 1.2 mn? initially flat blank. An analytical
spherical tool of 10 mm radius is used. The tool follows a ¢etclockwise tool path for
34 loops. In each loop, the tool move$s®m vertically downwards. At a fixed vertical
position, the tool performs the in-plane tool path. The datian finishes when the tool
reaches the end of loop 34, the first and the final loop deganifg shown in Figure 5.6.
The numerical blank is discretized with 3200 discrete Kiraff triangular shell ele-
ments. It is used as a reference model. Each element hasirifbintegration points. A
simple material model is used (Section 2.2.1), represientiir a mild steel. Two implicit
simulations are performed using the h-adaptivity method. iltermediate coarse initial
mesh of 800 triangular shell elements is used for these sitouks. In the first simulation,
the h-adaptivity introduces one level of refinement onlyf{iiRg while one level of remesh-
ing, refining and coarsening, is introduced in the secondisition (Remesh). During the
h-adaptivity simulations, the number of elements is exgebtd vary between 800 and 3200.
The simulations are performed on a single core of DUAL IntebX 306 GHz computer,
the performance of the simulations are summarized in TaBleEhe reference simulation,
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Table 5.2: The simulations performance.

Reference Refine Remesh

Nr. of increments 8087 8169 8154
Nr. of elements 3200 800-2032 800-2014
Nr. of Nodes 1681 441-1057 441-1048
CPU time (hr) 19.9 10.24 9.93
SPEED 1.0 1.94 2.00

performed on a fixed fine FE mesh, requiresdlir to finish 8087 load increments while
the remeshing simulation finishes 8154 load increments98 &r. The refinement only
simulation performs 15 load increments more than the remg&imulation and it requires
10.24 hr. The same terminology of SPEED in measuring the gaieeeéfit in CPU time
is used, dividing the reference CPU time cost over the uspdagph CPU time cost. The
h-adaptivity approaches accelerate the reference simonlby almost the same factor of
2. The advantage of the h-adaptivity is to keep the numberridf gpints (nodes) and
consequently the number of elements as low as possible.

The evolution of the grid points during the simulations dnewen in Figure 5.7. The
use of a geometrical variation indicator triggers the olléngrease of number of nodes
because of the shape development of the blank. By the use affihement approach only,
an increase is observed in the number of nodes during inthateestages of the simulation.
The remeshing approach results in an increase of the gnidgatbiat is in general less than the
growth of the number of nodes in the refinement approach. éfittal stage of the process,
the remeshing approach requires slightly less grid poiree the refinement approach. The
remeshing approach discretized the final geometry usin§ h08des (2014 elements) while
the geometry is discretized by 1057 nodes (2032 elemernitg) tise refinement approach
only. The final FE mesh of the simulations is shown in FiguBe 5.

In general, the results achieved by the refinement approach & better agreement
with the result achieved by the reference simulation comg&o the results achieved by
the remeshing approach. Considering the stretching sttairid-integration point through
thickness, The maximum achieved equivalent plastic stithe reference FE mesh is
0.438. The refinement approach predicts almost the same maxieguivalent plastic
(0.44) while it is overestimated by.4% (0.466) using the remeshing approach (Figure 5.9).
The maximum achieved equivalent plastic strain (referpatthe outer-integration point,
thatis representative of combined bending and stretchiamsis Q875. Itis overestimated
slightly by 3% (0901) using the refinement approach and significantly by ¥8(1042)
using the remeshing approach. The better agreement of fimemeent approach with
standard simulation holds also for the achieved distrisutif the equivalent plastic strain
compared to the remeshing approach.

The remeshing approach performs 41 combinations of refiamycoarsening during
the simulation. Several elements have been refined ander@atseveral times. For these
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Figure 5.7: The evolution of the grid points for the pyramilB simulation with different ap-
proaches.

Figure 5.8: The reference FE mesh (left) and it is fixed forghtre simulation. The final stage
FE mesh for the the refinement approach (middle) and the t@ngeapproach (right).

elements, applying the coarsening approach introducessebbecause of smoothing the
piecewise linear fields into one linear field. This error igykr at higher levels of strain

than at lower levels of strains. This coarsening is follovegdefinement in the following

loop. Refinementresults in significant deformation becafipeojecting the newly created
grid points, those are in contact with the forming tool, te tbol surface to adapt to the
tool geometry (Meinders, 2000). Mapping the data out of fngnsmoothed fields results
in further errors. This explains the significant overestiorat the outer integration point
compared to the mid-integration point for the remeshingrapgh. To conclude: both h-
adaptivity approaches successfully accelerate the mfere&mulation by a factor of 2. The
results achieved by the refinement approach has a bettacfioacdcompared to the result
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Figure 5.9: The achieved equivalent plastic strain at theimtiegration point through thickness
(left) and the outer integration point (right). The resuate achieved by the reference
(top), refinement (mid) and remeshing approach (bottom).

achieved by the remeshing approach.
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5.3 Summary and conclusions

The efficient implicit method applies a pseudo-linear mestt for the incremental and
the multi-incremental super elements. Within this treathfer a number of increments,
the tangent stiffness matrix is constant and the internaefwector is linearly updated
using the fixed tangent stiffness matrix. Therefore, thécstandensation of the internal
degrees of freedom for pseudo-linear updated super elentintvestigated. It reduces the
global size of the system of equations and that is expecteztiace the CPU time used in
solving the reduced system of equations. The static coadienss performed using an LU-

factorization method. The implementation and the perforeesof the static condensation
on the efficient implicit method is presented in Section 5Aldemonstrative case study
shows that the static condensation reduced the CPU timéwifigdhe system of equations
but not significantly to compensate the cost of condensiagsitstem of equations. For
some settings, the cost of solving the condensed systenuatieqs becomes larger than
the cost of solving the original system of equations. Th&uls in reducing the achieved
speeding factor by the efficient implicit method and everunégg more time than the

standard implicit simulation.

The second numerical technique studied in this chapterifhitadaptivity method, in
Section 5.2. Particularly, one level of refining and coaisgrfs considered. Grid points
are added to areas where more accuracy is demanded and thde cieleted in areas
where the solution is accurate enough. The cost of simgjaaim intermediate coarse
FE model is less than simulating the reference FE model aedstthe main advantage.
Repeated remeshing (refining and coarsening) for the SRI€eps simulation results in
overestimation of the equivalent plastic strain becausetefsive mapping. Refining only
maintains the accuracy compared to the reference FE modét accelerates the reference
simulation by the same factor as the remeshing method, Wwadstimes faster than the
reference model. The refinement approach has a high pdt#rities integrated with the
efficientimplicit method to reduce the consumed time by tRFsimulation by factors and
maintaining the accuracy. A demonstrative case study wipptesented in the next chapter
investigating this claim.






6. Applications

Two real-life incremental forming processes are simuldt@ddemonstration. The first
application is to simulate the production of a 20 mm deeppisamidal shape by a single
pointincremental forming process, described in Sectién he continuous bending under
tension of a strip by a roll set is described in Section 6.2er&HL6 cycles of forward and
backward longitudinal movement of the roll set are analyzed

6.1 Pyramidal shape

In this demonstrative application, the“4@yramidal shape produced by SPIF is simulated.
First of all, the efficient implicit method with no further kancements is used to accelerate
the standard implicit simulation. In general, a simulatisrstrongly influenced by its
settings. Here, the influence of the increment size and #emntact model on the standard
simulation and consequently on the efficient implicit mettare studied. Afterwards,
the achieved benefit of using the efficient implicit methognssented for two simulation
settings considering the manufacturing of & pgramidal shape. Finally, the advantage of
combining the adaptive remeshing method and the efficieplidgihmethod in accelerating
the standard implicit simulation of the SPIF process is gnésd.

6.1.1 Influence of increment size

The increment size in the implicit integration procedurinisted by the accuracy require-
ment and the robustness of the Newton procedure (Belytseh&ly 2007). In general, the
size of the load increment used in the implicit time integnaimethod is much larger than
the increment size in the explicit time integration methBdr an incremental forming pro-
cess e.g. SPIF, modelling the sequence of small deformiatto@ments requires thousands
of numerical increments to be performed. Using too large éiral increments represents
the simulation of a large number of penetrations insteadnfinuous incremental forming.
The use of too small numerical increments within the implioeéthod results in tremendous
computing times. Many factors influence the optimal sizénefdf load increment size like
the FE mesh discretization and complexity of the used naterddel.

The size of the load increments influences the convergentieedflewton procedure
and consequently the required number of iterations pereiment. This has an impact
on the overall CPU time required to finish a simulation. A rafehumb can be used to
define the size of the load increment in order to satisfy tlygirements of SPIF process.
Simply, an element has to be in contact with the forming toolf or 3 load increments to



78 Applications

model a continuous incremental forming process. This smple does not consider the
robustness of the Newton iterative procedure that is diréecfiuenced by the used contact
description, the complexity of the material model and eletiype. Therefore, an automatic
load increment size adjustment was developed in the ushduse FE package DiekA to
adapt the increment size to the convergence behavior of ¢hddwh procedure.

Basically, the easiness to reach convergence is used asligator to scale the load
increment size. An easy convergence of the current loagment results in an increase of
the nextload incrementsize. If the convergence of the atitoad incrementis notreached
the current load increment is recalculated again with a lEmbdad increment size. To
prevent a large fluctuation in the load increment size, thivemence history of a number
of previous load increments is used to determine the chahthedoad increment size for
the following increments. Also an upper limit and a loweriliis used to prevent the use
of too large/small load increments.

Case study

The simulation of one loop of a SPIF process (introduced icti8e 3.3.1) is used here
to demonstrate the influence of the load increment size opéhfermance of an implicit
simulation. A fixed load increment is used for the first sintiolawith 0.1 mm / increment
in z-direction introducing a penetration oBdmm and (5 mm / increment for the in-plane
movement of the forming tool. The second simulation uses#mee increment sizes with
automatic adjustment of the increment size. The incremeatsin be enlarged 3 times and
reduced 5 times.

The predicted vertical force during the simulation is shdawrrigure 6.1. The fixed
increment size simulation predicts large oscillation legwan upper value and a lower value
ofthe predicted force. The uppervalue presents the véldiading force of the forming tool
when it deforms a node to the prescribed location. Actuthily,deformation is introduced
by the movement of the tool over a series of nodes as showiguréb6.2. If the tool moves
from one node to deform the next node a smooth (oscillatier)fforce measurement
will be predicted that passes through the upper limit. Th&spnts a continuous loading
forming which is the real process. Because of the incremieat the lower limit presents
the force at forming tool moving from one node to anotherhtigs that the numerical blank
springs back because of less contact between the formihgaonumerical blank. The
adjusted increment size simulation predicts almost thesagpper limit of loading force as
the fixed increment size simulation. It also presents a bietteement size that reduces the
nonphysical oscillation while the tool moves from one naalanother.

The performance of both simulations is summarized in Talle Bhe fixed increment
size simulation performs 965 load increments in 5833 These increments consist of 2428
iterations and 438 line searches. For the automatic adjusteement size simulation, the
original increment size is increased by almost a factor df Berforms 328 load increments
in 32504 s. The adjusted increments use 1371 iterations and 253%d&asches. The
CPU time is proportional to the number of the used iteratior the used increments.
Large increment sizes require large number of iterationsiparement to converge, the
adjusted increment simulation performs on averag@eitérations per increment while the
fixed simulation requires.3 iterations per increment to converge.
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Figure 6.1: The predicted force in SPIF process by fixed imert size and automatically adjusted
increment size.

Figure 6.2: Schematic of continuous loading.

The efficient implicit method is expected to perform bettéhvadjusted increment size
simulation compared to the fixed increment size simulatiecabise of the larger average
number of iterations per increment observed in the adjust@ément simulation. The two
domain efficientimplicit method is used. The super elemargslassified either for iterative
orincremental update strategy. The 6400 shell elementgamped in 100 super elements. A
tool indicator is used with a fixed iterative ratio afd. The two domain method accelerates
the fixed increment size simulation by a factor o2& while the adjusted increment size
simulationis accelerated by®l with atotal CPU time of 2522 sand 1113 s, respectively.
The performance of the two domain simulations is summaiiiz§éble 6.1
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Table 6.1: The simulations performance.

Fixed increment  Adjusted increment

Nr. of increments 965 328
Nr. of Iterations 2428 1371
Iteration / increment 25 4.2
Nr. of line search 438 253
Newton CPU time (s) 5693.7 3250.4
Two domain CPU time (s) 2522.1 1115.3
SPEED 2.26 2.91

6.1.2 Influence of contact model

The interest in this section is to focus on the influence otacimodels on the performance
of SPIF implicit simulation. The penalty model and the augtad Lagrangian model are
used in this thesis. Briefly, the penalty method defines thetamb constraint as a multi-
plication of the gap function and a penalty parameter. A gaqetion defines the distance
between possible contact nodes. The augmented Lagrangidel is a compromise be-
tween the penalty model and the Lagrangian multiplier mokhghe Lagrangian multiplier
model, the contact constraint is imposed in the variati@walations by multiplying the
gap function by a multiplier. The augmented Lagrangian rhodsy be achieved by using
an iterative update for the multiplier with a penalty-likeodel. The reader is referred to
Zienkiewicz and Taylor (2005) for the derivations and thefalations of the models.

Defining a proper penalty parameter is a challenge. It is irsédth contact models.
The use of a large penalty parameter results in a stiff cost#tness that slows the con-
vergence of the Newton iterative procedure. A small penadtsameter results in a large
penetration between the bodies in contact which reducesgpuhiity of the achieved results.
The advantage of the augmented Lagrangian model is the aipfittie Lagrangian mul-
tiplier similar to the linearized model in the Newton itévatprocedure. This update may
enhance the convergence of the contact. The update canfoenped after each Newton
iteration or in an added iteration loop after the convergeoicthe Newton iteration loop.
This results in the use of more iterations.

The use of more iterations per increment in the augmentedanggan model may still
be within acceptable limits for simulating global formingopesses e.g. deepdrawing by
additional hours of CPU time. In incremental forming pragder instance SPIF process,
thousands of increments are performed on a relatively fineriégh. As discussed in
previous sections, the cost of the iteration is expensigesfiore performing thousands of
extra iteration is going to cost additional days of CPU time.
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Table 6.2: The simulations performance.

Penalty Augmented
1 loop /5 loops 1 loop / 5 loops
Nr. of increments 327 /1575 327/1673
Nr. of Iterations 1000 / 5028 1046 / 6965
Nr. of line search 2461832 238 /2913

Newton CPU time (s) 2468.0/12672.6 2570.4/21020.4

Case study

The focus in this case study is to investigate the influenclefused contact model on
the performance of SPIF implicit simulation. The Augmenitegrangian model and the
penalty model are used. The used penalty parameter is 1086R® The numerical model
here is similar to the used model in the previous case studgpa less tight convergence
criterion is used, it is @1. Five loops are performed, that produces a shall@witn deep
45° pyramidal shape. The convergence criterion for the Augerthagrangian loop allows
a penetration between the forming tool and the sheet thasssthan @5 mm.

At the end of the first loop, it is observed that both simulasithave almost the same
computational performance. The augmented simulationfass 046 iterations in 2570
s while the penalty simulation performed only 1000 itenasion 24680 s. A significant
difference is observed at the end of the five loops. The perdioice of the simulations is
summarized in Table 6.2. The Augmented simulation CPU tg24 0204 s for performing
6965 iterations while the penalty simulation finishes 50@8ations in 12675 s. The
augmented simulation requires 1973 additional iterataons2081 additional line searches
to the used 832 line searches in the penalty simulation. rébidts in the additional overall
CPU time.

The predicted tool vertical force by the contact models @vwahin Figure 6.3. There
are four pronounced peaks in the predicted vertical fores¢ tincide with forming the
material in the vicinity of the corner. Near the corner, thenerical blank is clamped at
both edges that makes it stiffer to deform. Moving the toofirone corner to the following
corner, the tool deforms material that is clamped at onewtueh is less stiff compared to
doubly clamped sides of the blank and consequently a rezhuiictihe predicted tool vertical
force is observed. The oscillation in the predicted fore=islained in Section 6.1.1 (where
augmented Lagrangian model is used) by the influence of ttrenment size. The second
reason is the used contact model hence the penalty modétsradmoother force compared
to the predicted force by the augmented Lagrangian model.

Inthe penalty model, aninitial estimation is made that maatéd a group of nodes to have

1The line search is a method to increase the effectivenesediéwton method for slow convergence because
of roughness of the residual force vector or deviating reglidorce vector from the linearized model (Belytschko
et al, 2007)
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Figure 6.3: The predicted force in SPIF process by the autpdelmagrangian model and the
penalty model.

contact with the tool. This initial estimation is recaldgd in the augmented Lagrangian
model within the iterative update of the Lagrangian muldphnd the penalty parameter.
This results in finding the actual contact area that is sm#dkn the initial prediction. The
initial prediction by the penalty model provides a largeaatacluding more nodes). It
helps in a smooth transition of the tool from a node to anattiert is going to have contact
in the next load increments) and consequentally in a smawtiefprediction. Less nodes
in contact, as predicted by the augmented Lagrangian miaseilts in less contact (rough
transition) while the tool moves from one node to another.

At the final stage of the one loop simulation, the augmenteptdragian model predicts
a lower vertical tool force than the penalty model. The taglrns to the starting point
because of the prescribed tool path of a loop, a sample obthe tbol path is shown in
Figure 5.6. In the augmented simulation, the tool expesdsitibe elastic force required to
deform the material back to the initially deformed positidFhe tool force in the penalty
simulation is higher than the one predicted by the augmesitedglation because the tool has
to displace the blank for a larger distance. This displaggnsdarger than the springback
displacementand less than the sum of the springback desplerat and the penetration depth
in the sheet.

6.1.3 Small / intermediate numerical model

A 20 mm deep 45 pyramidal shape produced by the SPIF process is studied.mblire
focus is to investigate the efficientimplicit method penfiamce in accelerating the standard
implicit simulation. The pyramidal shape is made of a 20000 x 1.2 mn? initially flat
blank. Two tool diameters are used: 20 mm and 10 mm. The taohélier influences the
required numerical discretization, the smaller tool regsiia finer mesh. Actually, both
simulations have the same ratio of element length to thed@wheter. The two simula-
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Table 6.3: The simulations settings.

First Second
Nr. of element 6400 25600
Shell element D. Kirchhoff T. D. shear T.
Nr. of DOF 18729 75849
contact model augmented / penalty augmented
Tool diameter (mm) 20 10

tions are performed for the different tool sizes, the sirtiates settings are summarized in
Table 6.3. 40 loops are performed using the same loop ssettisin Section 5.2. A simple
representative mild steel material model is used (Sectidrip

The first simulation can be considered as small scale nuaieniodel (18729 DOFs).
The two domain method is used to accelerate the standardcitrgimulation. The 400
super elements are classified into iterative and increrheptiate strategy. A simulation is
performed using the tool indicator and another simulattopérformed using both the tool
and the plastic indicator. In general, the two domain methaztessfully accelerates the
standard implicit simulation, the simulations performaicsummarized in Table 6.4. The
two domain methods achieve higher SPEED using the toolatdi®nly compared to the
combined tool and plastic indicator. With the tool indigadaly, it accelerates the standard
implicit simulation by a factor of 3 compared to.BO for the combined indicators. This
is a result of using a smaller iterative ratio by the tool gator (0141) compared to the
used iterative ratio (358) by the combined indicator, see (4.13). The use of thenanted
Lagrangian model requires more iterations to achieve thevexgence compared to the
penalty model, therefore a larger SPEED is achieved in tigen@mted based two domain
simulation (273) compared to the penalty based two domain simulatiatBj2using the
tool indicator. Almost the same number of increments, tters and line searches are used
by the two domain method compared to the standard impligitigtion.

The xz profile aty = 0 is used to evaluate the achieved results. The Augmented
Lagrangian standard simulation has a better predictiomekt profile compared to the
penalty based standard simulation by achieving the piestidisplacement at the bottom
of the pyramid that is 20 mm. The two domain method has a vepdgmreement in
predicting thexz profile with the standard implicit simulation, this holds tmoth contact
models. For the tool indicator based simulation, the egtiniited to less than 50m. The
use of both the tool and the plastic indicator uses a largeatit/e ratio that corresponds to
better prediction of the plastic zone. This results in rédgche error in the predictexiz
profile to less than 1am

The second simulation can be classified as an intermeditersodel. The FE mesh is
discretized using Discrete Shear Triangular shell elemenbhe FE model contains 75849
DOFs. A smallertool diameter is used with the Augmented hagian contact model. The
standard implicit simulation requires almost a month.829days) to finish the tool path
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Table 6.4: The simulations performance of the coarse getfihe first entry belongs to augmented
based simulation and the second entry is for the penaltydbsisrulation.

Standard Two domain Two domain
Tool Tool + plastic

Nr. of increments 10725/ 8869 10753 /8871 10808 / 8871
Nr. of Iterations 51322 /31526 51142 /31410 51457 /31515
Nr. of line search 31521 /2140 32308 /2090 32634 /2143

iterative ratio 1.00/1.00 0.141/0.141 0.358/0.398
CPU time (hr) 49.22/21.35 18.04/9.79 27.24/13.70
SPEED 1.0/10 2.73/2.18 1.80/1.55

Table 6.5: The simulations performance of the fine setting.

Standard Two domain

CPU time (day) 29.34 8.86
SPEED 1.0 3.31

(Table 6.5). The two domain method with the use of the tooicatbr requires only 86
days. It accelerates the standard implicit simulation bgcadr of 331. It has a very good
agreement of thez profile aty = 0 compared to thez profile of the standard implicit
simulation. The two domain methodz profile deviates by less than &0n, as shown in
Figure 6.5

6.1.4 Two domain—adaptive refinement

The purpose of this demonstrative case study is to apply twoamical techniques simulta-
neously during a SPIF process simulation of & ggramidal shape of 17 mm deep. These
numerical techniques are the efficient implicit time int#grn scheme and the adaptive
refinement. The adaptive refinement scheme uses the haataptethod and introduces
one level of refinement. The efficientimplicit method spiits FE model into two domains
that apply an iterative and an incremental update strategy.

The numerical blank of a 100 100 x 1.2 mn? is discretized with 3200 discrete shear
triangular shell elements. Itis a reference model. Eacimei# has in total 21 integration
points. A simple material model is used (Section 2.2.1)rasentative for a mild steel.
The standard implicit time integration scheme is used takibe the incremental forming
of the reference blank into a 4pyramidal shape by an analytical spherical tool of 10 mm
radius. The simulation finishes when the tool reaches theoéhabp 34, the first and the
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Figure 6.4: The achieverz profile by the standard simulation using different contacidels
(top). The error in predicting thgz profile by the two domain method using aug-
mented model (bottom left) and penalty model (bottom right)

final loop description is shown in Figure 5.6. Two implicitrsilations are performed using
an intermediate coarse initial mesh of 800 triangular stlelinents. In the first simulation,
the h-adaptivity introduces one level of refinement onlyf{iRement) while in the second
simulation the adaptive refinement is combined with the taxmdin method (two domain—
refinement). Because of adaptive refinement, the numbeeaiesits is expected to vary
between 800 and 3200 within these simulations.

The overall performance of the simulations is summarizethinle 6.6. The reference
simulation performs 8052 load increments in39hr. On average, the adaptive refinement
method accelerates the standard implicit simulation byctofaof two, this agrees with
expectation as shown in Section 5.2.1. The two domain metlcodlerates the adaptive
refinement simulation by a factor of8 resulting in an overall acceleration of the stan-
dard simulation by a factor of.8, performing almost the same number of increments. A
high SPEED is achieved in the initial stage (the first thodsanrements), the refinement
simulation has a SPEED of 4 while the two domain—refinemehieaes a SPEED of 8.
The achieved SPEED is reduced during the simulations, tbkieon of SPEED for both
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Table 6.6: The simulations performance.
Reference Refinement Two domain-refinement

Nr. of increments 8052 8145 8169

Nr. of elements 3200 800-2032 800-2048

Nr. of Nodes 1681 441-1057 441-1065

CPU time (hr) 10.54 5.27 2.92

SPEED 1.0 2.0 3.61

simulations is shown in Figure 6.6. The main cause of redyitia achieved SPEED is the
increase of the number of elements. Because of the h-adgptigthod, a gradual growth
of the FE model size is observed as shown in Figure 6.7. Irctse study, the advantage of
using the intermediate coarse mesh has a large impact on[3PEEe initial stage of the
simulation. The currentmesh is developed initially fromrstermediate coarse mesh and its
growth is limited by one level of refinement resulting in thesfimesh used in the reference
simulation. The use of coarsening will not enhance the aeldi&PEED significantly and
it will not maintain the accuracy as discussed in Sectionl5.2

The new elements are mainly added in the vicinity of the tesliting in an increase
of the iterative ratio as shown in Figure 6.8. The increasthefiterative ratio results in
reducing the achieved SPEED of the two domain method as shmotlie same figure. The
refinement reduces the effectiveness of the two domain rdetHere, SPEED is defined
as the ratio of the required computing time by the refinementition to the computing
time of the two domain-refinement simulation.
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Figure 6.7: The evolution of the total number of elementimtivo domain-refinement simula-
tion, the refinement simulation has almost the same elengentgth.

Ingeneral, the results achieved by the adaptive refinenpgndach and the two domain—
refinement approach have a good agreement with the resdiisvad by the reference
simulation. Considering the stretching strain at mid-gmédion point (in Figure 6.9), the
maximum achieved equivalent plastic strain at the refex&temesh is @87. The adaptive
refinement approach predicts almost the same maximum dgunivalastic (0496) it is
overestimated by.8 % while it is overestimated by.2 % using the two domain-refinement
approach which predicts a maximum plastic strain gf93. The observed less smooth
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Figure 6.8: The revolution of the iterative ratio in the twondain—refinement simulation (left).
The achieved SPEED of the two domain-refinement methodexatielg the refine-
ment simulation.

distribution of the resultis introduced by the adaptiverrefnent approach. The two domain
method nicely predicts even the less smooth distributicdh@flastic strain.

6.2 Continuous bending under tension

The continuous bending under tension process is a multitpairemental forming process.
The first stage of the process and the setup description ptaiezd in Section 3.3.2. The
first stage introduces bending by the vertical movement ofraéroll near one end of the
strip. Subsequently, the roll set moves to the opposite Bioding this stage, both edges of
the strip are fully clamped. Now, the roll set is located &t ¢lyclic starting point position.
The process proceeds by moving the far edge of the strip awapply a tensile load. The
tensile load is combined with continuous cyclic movemerthefroll set. A full cycle of the
roll set contains a forward movement towards the moving gtdge and backward towards
the starting point as shown in Figure 6.10.

The initial bending is introduced by the vertical centrdl displacement of 3 mm. The
roll set longitudinal span movement is 100 mm traveled a¥ &@m/s. The moving edge
velocity is 25 mnmys. With these settings, the standard implicit simulatiopasformed
using a penalty contact model. A two domain simulation ifqremed to accelerate the
standard implicit simulation. The iterative and the incesrtal super elements are classified
using a tool indicator (Section 3.3.2)

The predicted vertical force on the central roll by both dations is shown in Fig-
ure 6.11. The process performs 16 cycles, an extensivesigsalfjthe process is presented
in the following chapter. The vertical force predicted by tivo domain has a very good
agreement with the force predicted by the standard sinmratiThe deviation is limited
to a few Newtons. At the change of the roll set direction, threrds limited to less than
20 N which is observed for half of the process time. Aftervgttie deformation becomes
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large resulting in elongated elements (almost double thialitength) and that introduces
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Table 6.7: The continuous bending under tension precessdations performance.

Standard  Two domain

CPU time (hr) 59.51 33.02
SPEED 1.0 1.8

slight oscillations in the force measurement and, of cquaseincrease of the error even
within the cycle. The CPU time performance is summarizedabl& 6.7. The standard
implicit simulation finishes the 16 cycles in 5 hr. The two domain method accelerates
the simulation by a factor of.8 and finishes in 382 hr.

6.3 Summary and conclusions

Two real-life applications of incremental forming are dematrated. The first application
is the production of a 20 mm deep 4pyramidal shape by SPIF process, in Section 6.1.
For a particular setting, the two domain method acceleratesmonth simulation by a
factor of 331. It finishes the simulation in almost 9 days with an errdegt than 6@:m.
The achieved speeding factor for a simulation is influencedhie used contact model
and the increment size because both settings influencedb&ed number of iterations to
converge. The two domain method combined with the adapgifireement accelerates the
standard implicit simulation of 3200 shell elements by adaof 3.6. Actually, the adaptive
refinement accelerates the standard implicit simulatioa factor of 2 and the two domain
method accelerates the adaptive refinement simulation agtarfof 18.

In Section 6.2, the two domain method successfully accelgitne standard implicit
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simulation of the continuous bending under tension testfagtr 18. A very good agree-
ment of the predicted central roll force is achieved by the tlemain method simulation
compared to the achieved prediction of the force by the stahdimulation. A numeri-

cal investigation of the continuous bending under tensimtgss is presented in the next
chapter.






7. Continuous bending under tension

In this chapter the continuous bending under tension tastilyzed by numerical simulation.
In particular the ability of achieving high strains by coméd stretching and bending is
considered. This deformation mode has similarities withadbformation that takes place in
incremental sheet forming (ISF) and may explain the highirs¢rthat are observed there. A
state-of-art for continuous bending under tension proiseisgroduced in Section 7.1. The
experimental setup and the 3D FE model are introduced indeti2. Within this section,
the sensitivity of the numerical model to mesh discretmaiis studied. Also, different
material models are investigated. An isotropic hardeniragemial model and two mixed
isotropic/kinematic hardening material models are useith Batisfactory results achieved
by the isotropic hardening model, a further analysis on tleficforce—displacement curve
of the CBT process is presented in Section 7.3. This anafgsisses on the pattern of
the cycle that consists of two different parts and the evmfubf the cycle during the
process. In Section 7.4, a numerical stability analysigfloomogeneous stress distribution
isintroduced. The model describes the importance of bgndistabilizing the deformation
under tension. According to that criterion, a stable defation can be achieved as long as
it requires an increase of the force.

7.1 Introduction

For the last decade much research has been carried outigatexy the mystery of incre-
mental sheet forming (ISF), being that the achieved stmie®ften far above the forming
limit curve (FLC) that is established for ordinary sheetnfiimg. Furthermore, it has a
relatively simple and cheap setup. The ISF process is linitesmall volume production
because of the long running time of the process. ISF is aalisphent controlled process
performed on a CNC machine. A clamped blank is deformed byrttréeement of the tool
that follows a prescribed tool path (Matsubara, 1994). Thegss was described in a patent
by Leszak (1967) without the use of a CNC machine. An extermierview of the process
is given by Jeswiegt al. (2005); Bambach (2008); Emmeesal. (2010).

Several mechanisms have been proposed in the literatuxpkmiethe increased forma-
bility that is achieved by ISF. These mechanisms are sunzethéand discussed in full detail
in a recent review paper by Emmens and van den Boogaard (2008 early assumption
for stabilization was based on governing through-thickrstear. This mechanism could
not be confirmed by recent experiments performed usingsipgint incremental forming
(SPIF) and two point incremental forming (TPIF). Instedtktshing combined with shear
in the plane perpendicular to the tool direction and shedhénplane parallel to the tool



94 Continuous bending under tension

direction is proposed in the same framework (Jackson ando®id, 2009).

Another proposed mechanism is bending under tension. Ih&as proposed based on
3-dimensional FE analysis (Sawaéial., 2001). The deformation in ISF is subjected to
bending and unbending with stretching along the meridizndind shear in the circumferen-
tial direction. Also, based on experimental works on watéfgrming, a localised bending
and unbending in a global stretching of the sheet is assuongtdbilize the deformation to
high strain (Emmens, 2006). Very recently, a simplified emntus bending under tension
(CBT) setup has been proposed to investigate the bendirgy terasion in ISF by Emmens
and van den Boogaard (2009a). In the early 70s, the basioide8T was proposed to
investigate the material properties at high level of sireinfBenedyket al., 1971). It is
shown experimentally that high levels of strain are obtdifoe various materials. In indus-
try, the CBT process is implemented in the tension leveliragess, which is used mainly
to improve the flatness of sheets and to gain a small permah@mgation. The tension
leveling process has been experimentally and numericaitied in (Mols, 1972; Yoshida
and Urabe, 1999). A simple 2-dimensional FE model of the psed CBT process has been
used to study ISF by Hadoushal. (2007). Indeed, the 2-dimensional FE model predicts
a stable deformation up to a high level of strain.

The CBT process is, by itself, an incremental forming prece$he advantages of
investigating bending under tension in the CBT setup ratiem on a typical ISF process
are the simple stress field around the rolls and the absendeully curved shapes. The
essentially 3-dimensional complex bending in ISF is redumethe CBT setup to a merely
2-dimensional case. A tensile test can be carried out imatelgiafter CBT testing. This
gives the possibility to investigate the actual stresgstatl the achieved hardening directly,
without unloading or further machining of the product.

7.2 Numerical model and process description

The experimental description of the CBT process has beelaiexpl in detail in Emmens

and van den Boogaard (2009a). Within this section, someeoéxiperimental descriptions
will be mentioned for their relations to the numerical modéhe CBT setup is shown in
Figure 7.1. The roll setis modeled by 3 analytical, frictess, cylinders of 15 mm diameter.
In longitudinal direction, the rolls are separated fromteather by 17.5 mm. The roll set
can travel in the longitudinal direction only. First, thent&l roll is placed such as to fit
the specimen in between the rolls without deforming it. Thecentral roll can move in

thickness direction to introduce bending. A two dimensi@thematic of the FE model is
shown in Figure 6.10. The bending in the specimen is intredury the movement of the
central roll downwards. The movement of the roll set in Idadinal direction introduces

the bending in a cyclic manner.

The used specimen in the CBT process is schematically showigure 7.2. Through
the length of the specimen, the specimen has uniform th&skaad piecewise uniform
width. The middle of the specimen has the smallest width. cietic bending is performed
only in the middle part of the specimen. Experimentallysipbserved that the part that
experiences the combined tension and bending deforms emshé&igure 7.3. Because of
the geometry and load description, the plastic deformaticthe wider parts is neglected
for mild steel. The wider part of the strip can be assumed pearnce rigid body motion,
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Figure 7.1: CBT setup (Emmens and van den Boogaard, 2009a).
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Figure 7.2: Schematic of the experiment specimen, dimerisian mm (the drawing is not to
scale).

compared to the large plastic deformation in the middle pathe specimen. Only the
middle part of the specimen is considered in the simulatBecause of symmetry along
the longitudinal axis, half of the middle part of the speam®emodeled. The modeled part
of the specimen is 200 mm in length and 10 mm in width. The thess of the modeled
part of the sheet is 1 mm.

7.2.1 Mesh dependency

Three FE meshes are used to show the influence of the FE mesitydeéaregular mesh
is used with 8 triangular shell elements used to discretizel®D mm width. The triangles
are large at the longitudinal symmetry line and small at tlee fstrip edge with an ele-
ment size ratio of 4to 1. A uniform element length is used émgitudinal discretization.
Three longitudinal element lengths are used and classifiedaarse (1 mm), intermediate
(0.5 mm) and fine (5 mm). The modeled strip is imperfection-free since a ndoam
strain distribution is presented by the bending. A nonumifstrain distribution through
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Figure 7.3: Untested and tested specimens: untestedtgop)le tested (middle) and CBT tested
(bottom). A uniform deformation is observed in the whiteteagle (Emmens and
van den Boogaard, 2009a).

Figure 7.4: The used different mesh densities: coarsg,(lefitrmediate (middle) and fine (right).
The sample models 2 mm length and 10 mm width, with the free edghe left.

the length is introduced by the cyclic roll set movement (biaghet al., 2007). Samples of
the different meshes are shown in Figure 7.4.

The predicted longitudinal force at the clamped edge velsisross bar displacementis
shown in Figure 7.5 for the 3 different meshes. For convergetie absolute displacement
of the cross bar will be used in this chapter keeping in mirad the cross bar travels in the
negative longitudinal direction. The different meshegdarethe same pattern of the force
displacement curve with almost the same achieved value.diffegzence in the achieved
predicted force value is a result of the spatial discreitizat As expected, a higher level
of oscillation is observed in the coarse mesh, see Sectibf.6The fine mesh simulation
finishes 15 complete cycles and fails during cycle 16. Mordes/are modeled by the
coarse and the intermediate meshes. A larger element i€&xp®m smooth the achieved
strain and that results in delaying the localization of teéodmation.

7.2.2 Material models
In metal forming, a yield functio® is often used to describe the stress—strain behavior that
governs the elastic—plastic mechanical behavior. Tha yigiction® can be defined as

O = O'eq—O'f (71)

whereoeq andoy are the equivalent stress and the flow stress, respectiieyflow stress
ot defines the current yield strength, it models the size of takelpurface that may expand
(hardening) or contract (softening). The equivalent stseg defines the shape of the yield
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Figure 7.5: The predicted force—displacement diagramshferentire CBT process (left) and a
zoomed-in part of the process (right).

surface in stress space. For a comprehensive overview,ablestby Simo and Hughes
(2000); Belytschkeet al. (2007); Hill (1950); Zienkiewicz and Taylor (2005) are ugef

In this work, the anisotropic yield function postulated bill K1948), also known as
Hil'48 is used. In Hill'48, three orthogonal planes are puened that lead to three principal
axes of anisotropy. For sheet metal, these principal axaside with the rolling, transverse
and thickness direction of the sheet. Hill'48 can be writasn

¢ = F(oy — 02)°+ G(oz — 0x)* + H(ox — 0y)* + 2Lo, + 2MoZ + 2Nog, — x* (7.2)

the valuex can be scaled with the orthotropy parametérsG, H, L, M andN. Here,
the valuex is equal toss+/G + H. By this choice gt equalssy in a uniaxial tensile test in
thex-direction. For a plane stress condition, Hill'48 yield fition is simplified by setting
07 = 0y; = 0z2x = 0, and becomes

¢ = (G + H)of — 2Hoxoy + (F + H)o] + 2Noj, — 207 (7.3)

Isotropic hardening models a continuous expansion of thkl\durface and the yield
strength is equal in tension and compression. It can be raddil the power law

of =00+ C(e + so)n (7.4)

Itis a simple hardening law, the four parameters can beyefitséld to a uniaxial tensile test.
In cyclic loading, the isotropic hardening model providesmpresults. At load reversal,
the material yields earlier compared to the isotropic haig model. This phenomenon
is known as the Bauschinger effect. The kinematic hardenindel of Armstrong and

Frederick describes the Bauschinger effect with the uskeback stress

&= i(AK% _ A|§) (7.5)
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Table 7.1: DCO6 material parameters.

Orthotropy parameter F G H L M N

Value 0517 Q702 1298 3 3 312

isotropic  isotropic/kinematic 1  isotropic/kinematic 2

o0 (MPa) Qo 0.0 950
C (MPa) 494 4515 3000
0 () 1.0 x 10° 1.0 x 107 1.0 x 109
n ) 0.248 0248 Q340
A () 0.0 474 125
A () 0.0 9913 766

wherel is the plastic multipliet. The back stress stores the history of the stress pathe
describes the hardening ra#, controls the contribution of the back stress in the evotutio
equation of the back stress. It allows a gradual increadeedfaw stress after load reversal.
Chaboche (1991) extended the kinematic hardening modebhserved accurate results
for a loading history with 10 load reversals. In (7.8),— ¢ is used instead of. The
isotropic/kinematic model describes the growth of thed/iglirface and the Bauschinger
effect for cyclic loading.

Inthe CBT process, a part of the strip is bent and unbent fehr pass of the roll (3 times
for the roll set). Three parameter sets are used in this figasn to model DC0O6 sheet
material, the used parameter sets are listed in Table 7€fifBihset represents only isotropic
hardening according to (7.4), the other two use a combinaifasotropic and kinematic
hardening according to (7.4) and (7.5). The latter two patamsets are obtained by fitting
with a different weighting factor for the transient zoneeaifioad reversal. Two cycles are
modeled. At the end of the simulation, the element lengtioigoted.

The stress—strain curve for the tension—compressiongastawn in Figure 7.6. A dif-
ference in the stress—strain curve is observed even forgi@ért of the test that introduces
monotonic tensile loading. After a load reversal, the ispir/kinematic 1 material model
shows a non-sharp elastic/plastic transition compardutsharp elastic/plastic transition
that is observed in the isotropic material model. The igmtkinematic 2 model shows
a gradual stress increase after the load reversal thatges\a transient hardening effect
modeling the Bauschinger effect.

An experiment is performed with a roll speed of. 8&hm/s and cross bar velocity of
2.5mm/s. Bending is introduced by shifting the central ralB31m in thickness direction
and it is held at this level for the entire process. The pitedi¢orce at the clamped edge
for each material model is plotted versus the cross bar aigphent in Figure 7.7. In
general, the force—displacement curves predicted by tiee tifferent material models are

2 00
it}

1 s . . I . . D
Drucker’s postulate requires that the plastic strain igppadicular to the yield surface? = e
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Figure 7.6: Stress—strain curves for the componenisdirection.
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Figure 7.7: Force—displacement curves for different makterodels: the entire process (left) and
one cycle (right).

very similar to the experimental force—displacement cufiiee different material models
predict successfully the sudden increase of the force asttiré and at the middle of the
cycle. Atthe second half of the cycle, the material modetsifmt the gradual decrease of the
force at the final stage of the cycle. Astonishingly, the Bhirgger effect that is included in
the isotropic/kinematic material models shows no significhfference in the pattern of the
predicted force compared to the predicted force by theagitrmaterial model. However,
the isotropic/kinematic material models show earlier lizedion than the isotropic material
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Figure 7.8: Evolution of the cyclic force—displacementweuduring the CBT process: the third
cycle (top left), the sixth cycle (top right) and the twelttyxcle (bottom).

model. This contradicts with the expectation that kinemlaséirdening models can stabilize
the process because of the higher slope of the stress—stnaia compared to the slope in
the isotropic material model as can be seen in Figure 7.6.

7.3 Force displacement curve

The purpose of this section is to analyze the force—dispiaes curve. In recent work
of Emmens and van den Boogaard (2009a), the force—dispkmssurve is presented for
the CBT process, three representative cycles of the foispladtement curve are plotted in
Figure 7.8. They explained some aspects of the force maasmteon the CBT process.
The peaks (the sudden increase of force) were explaineddhyetbeleration of the roll set
to change the movement direction resulting in an increasesile force. The additional
positive/negative contribution of the down/up movemerthefroll set was used to explain
the change in average of the force between the first and tlrmddmlf of the cycle.
However, the numerical model does not include the accéderdeceleration of the
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Figure 7.9: Different deformation history within the cyclioll set movement. The number of the
zones defines the number of bending/unbending operations.

roll set, instead it changes the direction of the roll set idimtely and the peaks are still
observed. Ignoring the acceleration/deceleration ofdlieet results in predicting a smaller
span length of cycle in the FE model compared to the expetihepan length of the cycle.
This explains the lag of the measured force compared to thdigied force. It is true that
the roll set has positive/negative contributions to thenglad longitudinal force but it does
not explain the evolution of the shape of the cyclic forcepticement curve during the
process.

Within the continuous bending under tension process, tim tmaterial portions de-
form plastically. Because of the bending contribution theguire less tension force to
deform compared to the force required to deform the samesc®stion under tension only
(Marciniak and Duncan, 1992). Therefore, the rest of thip stiaterial is loaded elastically.
Due to the geometry of the roll set (three identical rolls &) the strip is bent and unbent
at different levels. Three zones are defined based on thadremy of bending/unbending
as shown in Figure 7.9. In zone 1, the material is bent andntrdoece for each pass of
the roll set. Similarly, the material experiences 2 setsaxfding/unbending and 3 sets of
bending/unbending in zone 2 and zone 3, respectively. Ruliity, the zones are defined
from one roll center to another roll center. Zone 1 and zonax&tspan length of 13 mm
which equals the longitudinal distance from one roll to &eot Zone 3 has the largest
length, it is equal to the span length of the cycle (here itG8 thm) minus the distance
between the lower rolls (35 mm).

The strip is under tension during the CBT test because of th&sdar displacement.
This results in dragging the material to the left as shownigufe 7.9. Consequently,
the material will migrate from one zone to another that ha#farént frequency of bend-
ing/unbending. Eventually, part of the material that eigrered bending leaves the bend-
ing/unbending zones to be under tension force only as thefdke strip. The different
zones of bending/unbending frequency and material mandtirough these zones are pro-
cess characteristics of the CBT test. They are the keys taiexpe evolution of the shape
of the cyclic force—displacement curve.

7.3.1 Cycle

The cycle consists mainly of two peaks and two almost steadg pThe peaks are observed
at the interval when the roll set changes its travellingatiom. The steady parts present the
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major part of the cycle. The first half of the cycle models thkéset travelling towards the
moving cross bar and away from the clamped edge (where tbefomeasured). Therefore,
the measured force on average is higherin the first half affthke compared to the measured
force in the second half of the cycle. With the use of an iqotranaterial model only as
shown in Figure 7.8, the numerical model predicts the cyfolice—displacement curves in
very good agreement with the experimentally achieved cyolice—displacement curves.

Steady state

The goal of this discussion isto explain the evolution ofiteady state parts of the cycle. The
longitudinal force—displacement cyclic pattern depemisam process characteristics: the
differentbending/unbending zones and the migration ofitaerial toward the moving cross
bar. These two factors resultin differentlevels of hardgrilong the strip and consequently
thickness distribution. The hardening and the thicknestsidution along the strip implicitly
influence the evolution of the cyclic force—displacememteu To simplify the discussion,
the force—displacement curve is first explained based owlifferent bending/unbending
zones, then the additional influences of the other fact@sdiroduced.

Within the travelling distance of the roll set and becausthefroll set geometry, three
differentbending /Junbending zones are distinguished.cyhkc forward / backward move-
ment of the roll set shifts the active location of the plagformation through these zones
assuming that only the bent material deforms plasticallyiritial assumption of the cyclic
force—displacement curve is plotted in Figure 7.10. Th&uased curve considers the use
of an isotropic hardening material model and the positiggative contribution of the lon-
gitudinal force of the roll set. Also, it assumed a uniforniatenation within each zone. At
the beginning of the cycle, the roll set is located in zone d zone 2, the zone locations
are shown in Figure 7.9. Zone 1 and zone 2 are less hardeneddna 3 because they
are less deformed. The roll set moves toward the cross bagaadially it deforms more
material located in zone 3, all material in zone 2 and les®ratin zone 1. This results
in an increase of the force until the complete shift of thé set to zone 3. This requires
the roll set to travel 35 mm which is the length of zone 1 andez@n Then, a constant
force is achieved because a uniform deformation is assunitaéhvthe zone and the roll
set is completely in zone 3. The span of the cycle is 100 mnititigithe length of the
steady force measurement to 30 mm. Then, a decrease of theeifoobserved as the roll
set deforms material in zone 2 and subsequent material | oAt the end of the first half
of the cycle, the roll set is located in zone 1 and zone 2 nearribss bar. In the second half
of the cycle, the roll set moves backward to the clamped efleecstrip. The second half
of the cycle is assumed to be a mirror of the first half excepiael level of the constant
force part is assumed considering the negative contribudfahe roll set. The following
cycle will be performed at a higher level of force comparethmforce level of the current
cycle because of hardening.

Up to this point, each half of the cycle consists of an inceexshe force then a constant
level followed by a decrease of the force. The numericallyi@eed results of the longitu-
dinal force for the different cyclic patterns are plottedsies the absolute displacement of
roll set in Figure 7.11. The observed pattern of the thirdeynd the second half of the
sixth cycle have a very good agreement with the assumeccqyattern based on different
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Figure 7.10: Assumed force—displacement curve for is@trbardening material. For conve-
nience, the absolute roll set displacement is used, theebttavels 100 mm toward
the moving cross bar (negative direction) in the first halfhef cycle and 100 mm
backward to the clamped edge in the second half of the cyokt{ge direction).

bending/unbending zones. Still, some aspects of cyclituéen are not explained, spe-
cially the pattern of the first half of the sixth cycle domiedby a slight positive slope, the
concave-like pattern observed in the twelfth cycle and tekp that appear after a travelling
direction change of the roll set.

Because of the moving cross bar, the material is draggedribth@ cross bar. The
material migrates from one zone to another in one directmwatd the cross bar. To
emphasize the influence of material migration, the histdrgaveral nodes through the
length of the strip is shown in Figure 7.12. Clearly, node ddhyamoves (less than 1 mm)
for 12 cycles. This means that material in zone 1 near the ptahedge has the lowest
cyclic history and consequently is less hardened. Sigmifigamaterial migrates from zone
3 and gradually fills zone 2 and subsequently zone 1 near tis bar. For the first half of
the sixth cycle, zone 2 and zone 1 are completely filled withagemial originally deformed
in zone 3. This explains the almost constant level of forcslifght positive slope of the
force is observed). Of course, the sixth cycle finishes witleereasing force because the
roll set goes back to zone 2 and zone 1 near the clamped edge.

Performing more cycles, material keeps migrating. Evdhtusome of the material
that is originally deformed in zone 3 leaves the bendingamtling zones. The material
(between node 3 and node 5) has the highest level of hardemidgonsequently has
the most significant reduction of thickness along the stfipis material, because of the
significant reduction of the cross section, requires reddifiless force compared to the force
required to deform materials in zone 2 and zone 1 resultitigdrtoncave-like pattern of the
twelfth cycle. The hardening is a material property. Usingther material with different
work hardening rate influences the development rate (fastfof the cyclic pattern from
one pattern to another, but it will never change the prochasacteristics.
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Figure 7.11: Cyclic force evolution versus the absolut@ldisement of the roll set.
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Figure 7.12: Migration of material from one zone to anothmward the moving edge: initial
location (top) then at the beginning of the third cycle, tixérscycle and the twelfth
cycle(bottom).

Peak

As mentioned earlier, the peak in the force during the CBTcess is a sudden increase
of the longitudinal force. It is observered when the roll geanges its travelling direction
at the beginning of the first half and the second half of thdecytt has been suggested
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Figure 7.13: The local geometry of the strip in the FEM modeli@ line) just before reversing
the travelling direction of the roll set. The dotted line imaror image of the current
geometry of the strip.

previously (Emmens and van den Boogaard, 2009a) that theipaaesult of the accelera-
tion/deceleration of the roll set in the experiment. Buttie £E model, the roll set changes
its travelling direction instantaneously at the same sp&sen then, the peak is observed,
it lasts for a significant interval of the roll set travellimtistance and the response is not
instantaneous. Up to now, the different zones of bendirggnding frequency and material
migration give no direct explanation of the peak. In thisteyt further analysis is carried
out to explain the peak.

During the steady state part of the cycle, the active plaaiite is shifted with the
travelling roll set. Actually the travelling roll set shéfthe local curvature and as a result
the active plastic zone is shifted. During the peak, an ieeof the longitudinal force
(far from the assumed force expectation) is observed. H®ises the following question:
does reversing the travelling direction of the roll set fesua sudden change in the local
curvature? The local geometry of the strip in the FEM modst pefore reversing the roll
set travelling direction is plotted in Figure 7.13. Thish&tcurrent geometry at the end of
the fourth cycle, it is used to investigate the peak at thermigg of the fifth cycle. The
current travelling direction of the roll set is toward theciped edge (from left to right)
and it is going to reverse. A mirror image of the current getignelarifies that the roll set
can travel relatively easier to the left than to the rightrtRermore, reversing the travelling
direction of the roll set (moving to the left) will not resiita sudden and significant change
in the geometry of the strip. This geometry will last for ateirval of time.

With the movement of the cross bar, the strip must be elonigate a balance has been
reached recently between the tensile force and the bendingemt (the current curvature)
andtheroll setneedstime to change the curvature of thesster the reversal. Therefore, the
forceisincreasedto elongate the strip compensating tsstrar incremental displacement.
As a result of the increased tension force the strip plasticeforms in the region of the
roll set under bending and tension and partially under tamaway from the roll set. In
Figure 7.14, the plastic strain per increment is plottediar positions of the roll set, one
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Figure 7.14: A comparison of the plastic increment for twaigions of the roll set, one during
the steady part (dotted lines) and one just after the reMefsiae travelling direction
(dashed line).

during the steady state (dotted lines) and one just aftetrélvelling direction reversal of
the roll set (dashed line). Because of the deformation, tineent length of the strip at the
beginning of the fifth cycle is 230 mm. It can be clearly seat thuring the steady state
high plastic strain increments appear, but only near th&ipoof the rolls. Just after the
reversal of the travelling direction, the peak plastic istiacrements are much lower but
they extend over a larger region.

The increase of the longitudinal force when the roll set regs its travelling direction
is a result of a continuous movement of the cross bar. So, witidtappen if the cross bar
does not move at this stage? To understand the influence ebtitsauous movement of
the cross bar during the reversal of the roll set directiostualy on the force measurement
is carried out on the first peak of the fifth cycle. The study panes the longitudinal force
during the reversal of the roll set direction with and withdluie movement of the cross
bar. The comparison of the forces is shown in Figure 7.15hu\it the movement of the
cross bar, the roll set travels for 5 mm at almost constamtef@a slight drop of the force
is observed at the very beginning) with no significant changgeometry. Then, the roll
set further movement corrects the geometry and the bendibghding starts producing
significant plastic deformation (the strip is elongatedjshitreduces the tension in the strip.
This supports the claim that the peak results from the dedtion of the strip by increasing
the tension force (caused by the continuous movement ofrtss tar) with no significant
change in strip curvature.
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Figure 7.15: Longitudinal force evolution for the first pafthe fifth cycle with and without cross
bar movement.

7.4 Stability analysis

In general for bending under tension, the longitudinalsste is inhomogeneous through
thickness because of bending. This is the crucial diffezenith the standard stability
analysis of an ordinary tensile test. Depending on theleeltsd level, the inhomogeneous
stress distributiomy has a positive part and it can have a negative part. ThrougWitith,
the strip deforms approximately in a plane strain condifibthe symmetry line along the
length and in uniaxial condition at the free edge. Becausehaimogeneity, the instability
criterion for bending under tension cannot be derived ditaly. Therefore, it is derived
numerically for the CBT process.

In the steady state part of the cycle of the CBT process, themabaportions that
experience combined bending and tension show local pldsfarmation, it is located in
the vicinity of the rolls. A cross section, related to suchteni@l portions, is deformed from
its former geometry to the current geometry under simulbaisebending and tension. In
this work, a study is carried out investigating whether &ddal tension (perturbation) to
the current equilibrium between bending and tension fooasection will result in a stable
or instable deformation. A stable increase of the local{eigrequires an increase of the
longitudinal force. This means that the rate change of thgitadinal force with respect to
the local length has to be positive o

X
a 0 (7.6)
The tensile force is obtained by integrating the longitadisiressyy over a cross section

FX:/O'di:E)(A (77)
A

2|n this sectionx represents a coordinate along the curved strip in longitldiirection
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whereox and A are the average stress through a cross section and the examal
area, respectively. The average stress is used for comamie the following derivation.
Substituting (7.7) into (7.6) results in
dox dA
A—+0ox—>0 7.8
ar Toar ” (7.8)
Neglecting the elastic deformation and considering caristalume during deformation,
the initial geometry deforms to
V = Apl'g = AT (7.9)

the infinitesimal length strain increment of the mid-plaae be written as
dex =dI'/To = —dA/A (7.10)

with the use of (7.10) and rearranging terms in (7.8), thbikity condition (7.6) can be
written as

—= >0y (7.11)
dey
where @y /dey is the average tangent stiffness.

A stable increase of the local lendthrequires that the average tangent stiffnesg/dlex
must be larger than the average str@gs The perturbation (increase of force) shifts some
of the fibers from compression to tension resulting in insiegthe average stregg. The
most important fact is that the average tangent stiffn@sg dex is much higher than the
average stressy as long as there are still elastic fibers. For a strain hardgmiaterial, the
average tangent stiffness can be integrated over the czoisrsthat has a thicknesper

unit width as i V2 g o g @ 4
(97 _ / gt [ Sgp / 97 (7.12)
dex e1  ex e2 dex —t/2 U&x

whereel ande2 define the boundaries of the elastic zone through the teaknT he first and
the third termin (7.12) present the contribution of the péasly loaded fibers in tension and
compression in the average tangent stiffness, respegtivbile the second term presents
the elastically loaded contribution in the average tangéffhess. In the limit of a rigid
perfect plastic material model, the average tangent ssridy /dey still has a high value
because the second term in (7.12) is integrated over zerhrtbss with infinite stiffness.
In the initial work of Hadouslet al. (2007), the compressive stress has been proposed to
stabilize the deformation in the CBT test but it was not qifigt while in Emmens and
van den Boogaard (2009a) it has been quantified using a rgidqt plastic material model
ignoring the thickness change, resulting in a zero rightelside in (7.11). Equation (7.11)
includes the thickness change and presents a generaiarifer stability in the CBT test
and equally well in the tensile test.

To validate the stability hypothesis in the FEM analysishaf €BT process, the history
of the failed element is tracked. For a big picture, the clathjpngitudinal force for the
last cycles is plotted in Figure 7.16, the stresses aregulatt Figure 7.17 and an elastic
indicator is plotted in Figure 7.18. The clamped longitidiforce clearly shows that
unstable deformation governs cycle 17 and it starts at tleoéycle 16 when the force
drops instead of increasing like the end of cycle 15. For émesintervalgy for the lower
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Figure 7.17: The evolution afy through thickness for the failed element at the symmetm.lin

integration point (first), middle (fourth) and the uppen(@ith) are all in tensiorsy varies
for the rest of the integration points between the uppesstead the lower stress, they are
not plotted to keep the figure clear. The middle point stressways in tension and the
upper stress and the lower stress vary between compressideasion during the pass of
the roll set. When the roll set is away, the upper point stegds in compression anel at
the lower point is in tension.

At the beginning and at the end of cycle 15,for the lower and the upper integration
points are in tension. Now, an elastic indicator is used tkhvhether the average tangent
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Figure 7.18: The evolution of the elastic indicator for taddd element at the symmetry line.

stiffness has a high or a low value. Each integration poinvésghted by one if it is
elastically deforming and by zero if it is plastically defioing. The elastic indicator for one
column of integration points in thickness is the sum of théghs. Using seven integration
points through the thickness, a column of integration poiatfully elastic if the elastic
indicator equals 7 and fully plastic if the elastic indicag¢guals O. If the elastic indicator
varies between 1 and 6, it deforms in a mixed combination adtel/plastic deformation.
The elastic indicator shows that for a small interval in bogles 14 and 15 a full plastic
deformation through the thickness is observed. With thp bfthe stress history, it becomes
clear that within these intervads for all integration points is in tension. Cycle 13 is the last
stable cycle based on the elastic indicator and the conipeestsess, the evolution of the
stresses and the elastic indicator for this cycle are matté&igure 7.19. Now, the question
is why the cross bar incremental displacement did not Iaeat the failed element during
these intervals or in other words why the force—displacdmsarve does look stable for
cycle 14 and 15?

The presented results for compressive stress and elaslicator concern only one
column of integration points related to one integratiompai-plane and as it was shown it
violates the stability hypothesis. The structural respdnsa cross section is the sum of the
response of many integration points in the considered a@stion. The structural response
for a cross section is unstable when the entire cross seistiglastically deforming under
tension. The presented results are for the first integrgiwnt in-plane that violates the
hypothesis and itinforms us that the failure of the crostsewill be in the following cycles.
For defect-free final products, this is important infornoatthat recommends stopping the
process at the end of cycle 13. Unfortunately, the predistedility is mesh dependent,
forinstance further stable cycles are performed usingsayanesh. Using the intermediate
mesh discretization (shown in Figure 7.4), cycle 15 is panid without violation of the
stability hypothesis for the weakest integration pointe tumerical analysis is used here
to investigate the underlying mechanisms of stability ia @BT process, not to predict
the actual maximum achievable strain. Both mesh descriptsow that the criterion is
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Figure 7.19: The evolution of they through thickness (left) and elastic indicator (right) foe
failed element at the symmetry line during cycle 13.

violated at the first peak of the cycle, an increase of tefigitee is observed during the peak.
This is validated by the experimental observation that thip mostly fails at the beginning
of the cycle.

7.5 Summary and conclusions

The continuous bending under tension (CBT) process is aerimental forming process.
The advantages of investigating bending under tensionarCBT setup rather than on a
typical ISF process are the simple stress field around the aold the absence of doubly
curved shapes. The essentially 3-dimensional complexiberi ISF is reduced by the
CBT setup to a merely 2-dimensional case. Using the CBT gctke ability of achieving
high strain by combined stretching and bending is inveitidia

A 3-dimensional FE model is created for the central zone énsghecimen that is plas-
tically deforming. The model is discretized by trianguldie8 elements based on dis-
crete Kirchhoff theory. Three different meshes are ingegdd: coarse, intermediate and
fine. One dimensional refinement is considered for the elésiga in the longitudinal
direction. The used different meshes show no significafeihce in predicting the force—
displacement curve of the process during the stable detamai higher level of numerical
noise is observed in the predicted force displacement aisivey the coarse mesh compared
to the predicted force—displacement curve achieved by tigerfiesh. Early prediction of
specimen failure is observed using the fine mesh discritizas presented in Section 7.2.1.

In Section 7.2.2, three different material models are usechodel the CBT process.
These models are one isotropic hardening model and twajsictkinematic models. De-
spite the significant difference between these models idigiag the stress—strain curve
after load reversal, only a slight difference between thaelet®is observed in predict-
ing the force—displacement curve. The force—displacernente achieved by a simple
isotropic hardening model has a very good agreement witlexiperimentally measured
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force—displacement curve. A major difference between thgenal models is observed in
predicting the failure of the specimen.

A further analysis of the force—displacement curve for tH&T(process is described
in Section 7.3 based on an isotropic material model. Fogusimthe process description,
the cyclic force—displacement curve consists of two paststeady part and a transient
part (peak). The steady part of the cycle models the deféomaf the strip governed by
significant curvature change of the strip because of bendirtte peak results from the
deformation of the strip by increasing the tension forceénwiv significant change in strip
curvature. The peakis observed twice during the cycle edtmrsing the traveling direction
of the roll set. During the process, the cycle pattern dey&Id his development is a result
of several factors. The main factors are: different zonesofing/unbending frequency and
material migration through these zones. These factorgymedifferent levels of hardening
through the length of the strip and consequently a thickdistsbution. The hardening and
thickness distributions implicitly influence the develogmof the cycle pattern.

A numerical stability criterion is derived forinhomogenestress distributions through
the cross sectional area in Section 7.4. The model desdtieamportance of bending in
stabilizing the deformation under tension. A stable defmiion can be achieved as long
as it requires an increase of the force. Irrespective oftislfsrdening, a relatively large
change in the force occurs if a part of the cross sectionlise$distic, or for a rigid plastic
model, if a part is still in compression.



8. Conclusions and Recommendations

In this thesis, an efficient implicit method is introducedatteelerate the standard implicit
FEM simulation of single point incremental forming (SPIFhe method is explained in
several chapters focusing on the basic concept of the mgthptémentation, performance
and its extendability. Additionally, a fundamental study the mechanics of a bending
dominated incremental sheet forming process is presented.

Basic concept

A study on the evolution of nonlinearity during the calcidatof SPIF by an implicit time
integration scheme concludes that the standard use offtlkeengcis inefficient. A small part
of the system of equations experiences a strong nonliggardtombination of geometrical
and material nonlinearity) and requires a fully nonlinepdate procedure. The rest of
the equations, a large part, experiences only weak gearaktionlinearity which does not
require the expensive nonlinear iterative procedure.

An efficient implicit time integration scheme is introduclkdsed on a mixed update
procedure. Within an increment, the strong nonlinearity &dull nonlinear update treat-
ment. The weak nonlinearity has a pseudo-linear updatémezd and a nonlinear update
is applied only at the beginning of the increment to inclua previous nonlinear history.
After that, the predictoris reused and the corrector isdiheupdated. Itis demonstrated by
several case studies (with an acceptable margin of erfoas}tie efficient implicit method
is as accurate as the standard implicit method and acoeddta standard implicit method
by a factor of 2-3. The speeding up is a result of the relative cheapness pbtglo-linear
treatment compared to a full nonlinear treatment of a laayé gf the model.

Optionally, the pseudo-linear treatment can be applied fimoup of increments, which
increase the achieved speeding factor. This gives thelpliysto divide the FE model
into three domains. The first domain has an iterative updattrent and the pseudo-
linear domains that use the incrementally and the multiementally update treatment. In
the penetration test, it is observed that the achieved spgéaktor of the three domain
method is 20% higher than the achieved speeding factor ofvitbedomain method. A
better performance of the three domain method is expectadllfrger blank.

Implementation

The standard implicit scheme can be easily adapted to in¢halefficient implicit method.
The use of super elements facilitates the partitioning oEarfodel into different domains



114 Conclusions and Recommendations

with adapted update frequencies. Because of the localilestip deformation in SPIF,
a strong nonlinearity is observed in the vicinity of the teoloht travels following a tool
path, it is a small traveling plastic zone within a large #tadly deforming environment.
In order to define a proper distribution of the domains, saviedicators are developed
to generically classify the super elements. These indisae the current tool location,
plastic deformation in the previous load increment and tiepe change in the previous
load increment. The tool indicator uses a search radiusssifly the domains, it requires
experience to use (rule of thumb). The plastic indicatoselto shiftincrementally updated
super elements into the iterative update treatment. Itecdsthe prediction of the assumed
plastic zone. The geometrical indicator is dedicated tofothe shape change of the multi-
incremental super element, if it is too large, the super eletris re-classified to incremental
update treatment.

Performance

The speed factor (SPEED) measures the efficiency of the siperent based efficient
implicit approach in accelerating the standard impliaihslation of localised deformation
processes. SPEED is defined as the CPU time cost of one daloulacrement of a
standard algorithm compared to the cost of one incrementh@fefficient implicit time
integration procedure. SPEED is influenced by several facithese factors are the number
of performed iterations, the combination of the differeptiate strategy ratios, the used
update strategies and the cost of the major parts of the Nevei@mtion (BUILD, UPDATE
and SOLVE). The major parts ratio of a Newton iteration dejseon the material model
and the element type.

An analytical formula for the two domain method made of itedy and incrementally
updated super elements is developed. It shows that SPEEDd@meed by reducing either
the SOLVE ratio or the iterative ratio (the ratio of iteradly updated super elements to the
total number of super elements). Also, SPEED performs buiith a larger number of
iterations or simple material. A simplified upper limit of EED is found to be inversely
proportional to the SOLVE ratio and the iterative ratio. dhatically, the SPEED can go
to infinity at negligible SOLVE ratio combined with zero itdive ratio. The analytical
formula is extended to include the influence of the multikéimentally updated super ele-
ments on the achieved SPEED. Itis concluded that the thmeaidanethod accelerates the
implicit method more than the two domain method for the saoralrer of increments. The
performance of the three domain algorithm has a similaraesp as the two domain algo-
rithm regarding the iterative ratio and the SOLVE ratio. Hmalytical formula is validated
and it can predict in advance the expected SPEED of an impglioiulation for localised
deformation.

The task of the efficient implicit method for incrementalfong is to control the update
frequency of different domains. The size of the FE model hdiset impact on the partial
cost of the solver and consequently on the performance ofriithod. The size of the
system of equations can be reduced by including static eadi®n for the internal degree
of freedoms of the pseudo-linear super elements. A denmativ&rcase study showed
that the static condensation does not reduce the solverecmaigh to compensate the
cost of condensing the pseudo-linear element, resultirgdnver performance of SPEED



115

compared to the achieved SPEED of the non-condensed appribécworth investigating
the increase of condensation cost for large super elemeatisat may be caused by the
matrix multiplications or intricacies of the applied salve

The size of the FE model can be kept as small as possible btiaalemeshing. A study
on adaptive remeshing concludes that intensive remestefigiig and coarsening) results
in less accurate results while refining only maintains trexieacy compared to the reference
(initially fine) FE model and it accelerates the referenoasation by the same factor as the
remeshing method. Itis two times faster than the referermeatn The efficient modelling
(adaptive refinement) combined with the efficient use ofiydicit time integration scheme
(two domain) accelerates the standard implicit simulafima small academic case study of
the SPIF process by a factor a63 Adaptive refinement accelerates the standard simulation
twice and the two domain method accelerates the adaptiveraéint simulation by a factor
of 1.8. Thisimplementation was tested on a single processein#uostrial application, itis
recommended to use parallel computing in combination vhithetfficient implicit method
and the adaptive refinement method.

Process mechanics

The continuous bending under tension (CBT) process is aanimental sheet forming pro-
cess. The deformation mode is similar to the deformationttiees place in incremental
sheet forming. Using the CBT process, it is shown that a ethigih strain can be achieved
by combined stretching and bending.

A 3-dimensional FE modelis created, it is discretized tartgular shell elements based
on discrete Kirchhoff theory. Three different meshes awestigated: coarse, intermedi-
ate and fine. The used different meshes show no significafierelifce in predicting the
force—displacement curve of the process during the stajtaichation. Early prediction of
specimen failure is observed using the fine mesh discratizat

Three different material models are used: one isotropidér@ng model and two
isotropic/kinematic models. Despite the significant diéfece between these models in
predicting the stress—strain curve after load reversdy; arslight difference between the
models is observed in predicting the force—displacemantdn the CBT process. A major
difference between the material models is observed in ptiedithe failure of the specimen.
Combined with mesh dependency, it is concluded that the Fehwannot predict failure
correctly.

A further analysis of the force—displacement curve for tH&T(process is described
based on an isotropic hardening material model. Focusinpeprocess description, the
cyclic force—displacement curve consists of two parts: eady part and a transient part
(peak). The steady part of the cycle represents the defmmaf the strip governed by
significant curvature change of the strip because of bendirtte peak results from the
deformation of the strip by increasing the tension forcénwid significant change in strip
curvature. The peak is observed after reversing the tragdlirection of the roll set. During
the process, the cycle pattern develops. This developmarresult of two process factors:
different zones of bending/unbending frequency and nedteiigration through these zones.
These main factors produce different levels of hardenirytaitkness through the length
of the strip influencing implicitly the development of thecby pattern.
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A numerical stability criterion is derived for inhomogenmostress distribution through
the cross sectional area. The deformation is stable as Israglacal extension requires
an increase of the force. The model describes the imporiafizending in stabilizing the
deformation. It creates a compressive stress and eldgtloalded fibers. The shift of a
fiber from compression to tension increases the averagssstiide presence of elastically
loaded fibers maintains the average tangent stiffness ghdehiel as required by the stability
criterion.

Several research groups have beeninterested in studginggbhanism(s) that govern(s)
the SPIF process. Up to today, these mechanisms are stadigdiually and there is no
general agreement on a specific mechanism. All proposed anesths are directly or
indirectly related to bending. Very few researchers link #xtended formability in SPIF
to bending itself (based on FEM simulation by Sawatlal. (2001) and experimentally
by Emmens (2006)). In this thesis, further development isex out following the work
of Hadouskhet al. (2007) and Emmens and van den Boogaard (2009a) demongthatm
the bending mechanism does stabilize the deformation nemental sheet forming to high
strain.
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