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Summary

Single Point Incremental Forming (SPIF) is a displacement controlled process performed
on a CNC machine. A clamped blank is incrementally deformed by the movement of a
small-sized tool that follows a prescribed lengthy tool path. The strain achieved by the
SPIF process is higher than the strain achieved by classicalforming processes e.g. deep
drawing. This motivated many researchers for the last two decades studying the process
mechanics and still a definite explanation is missing. The finite element method is a powerful
tool in studying the forming processes. Compared to e.g. deep drawing, the FE model for
SPIF is very simple. However, simulation of the process is a challenging task because
of the enormous computing time as a result of performing thousands of load increments
on a relatively fine FE model. This limits the use of the finite element method to simple
academic cases that already require weeks of computing time. The focus of this thesis is to
efficiently use the implicit time integration method in order to drastically reduce the required
computing time for incremental forming simulation.

Because of the localised plastic deformation, the part of the FE mesh that is in the vicinity
of the tool experiences a strong nonlinearity. The strong nonlinearity is a combination
of the material and geometrical nonlinearities. The rest ofthe FE mesh that models the
elastically deforming part of the blank experiences only a weak geometrical nonlinearity.
Using the standard Newton method is required because of the strong nonlinearities in the set
of equations, but it is an expensive update procedure and it is inefficiently used for the large
elastically deforming part. Therefore, it becomes necessary to have a different treatment
that is accurate and computationally efficient for different parts of the FE mesh. The fully
Newton nonlinear treatment is used for the localised plastic deformation. The rest of the
FE mesh that is elastically deforming is treated by a pseudo-linear approach. The pseudo-
linear treatment applies a nonlinear geometrical and material update for the tangent stiffness
matrix and the internal force vector only once every increment or number of increments.
Within the increment(s), the tangent stiffness matrix is reused, as in the modified Newton
method. The internal force vector is linearly updated by themultiplication of the tangent
stiffness matrix and the incremental displacement vector.It is a relatively cheap update
procedure compared to the Newton method.

The partitioning of the FE mesh into domains with different update strategies (iteratively,
incrementally and multi-incrementally) can be done by several indicators. Here, three
indicators are developed for incremental sheet forming in order to generically classify these
domains. These indicators are the current tool location, plastic deformation in the previous
load increment and the shape change in the previous load increment. The tool indicator and
the plastic history indicator are suitable to classify the FE mesh into the iterative and the
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incremental update strategies. The geometrical indicatoris used to determine the needs of
updating a multi-incremental domain.

An analytical formula is derived for SPEED which measures the performance of the
efficient implicit method in speeding up the standard implicit simulation of an incremental
forming process. It is defined as the CPU time cost of one Newton increment to the cost of one
increment of the efficient implicit method. SPEED depends onseveral factors: the number
of the iterations used per increment, the used update strategies, the size of the domains and
the cost of major parts of the Newton iteration (building thesystem of equations, solving it
and updating the stresses). For a simple material model and finite element type, the efficient
implicit method can accelerate a SPIF simulation with negligible iterative zone size and
negligible solving cost by a factor approximately equal to the number of the iterations used
per increment. Furthermore, the advantage of adaptive refinement is combined with the
efficient implicit method resulting in an additional acceleration of the implicit simulation
of a SPIF process.

In addition, this thesis presents a fundamental study on a particular aspect of the process
mechanics involved in the SPIF process. The study is carriedout on the continuous bending
under tension (CBT) process. It has the advantage of reducing the 3-dimensional complex
bending in the SPIF process to a merely 2-dimensional case. It is shown that combined
bending and tension can stabilize the deformation of a stripto a high level of strain. An
increase of the force is required to introduce additional stable deformation. This condition
requires that the averaged tangent stiffness has to be larger than the averaged stress. The
presence of compressive stress reduces the average stress while the elastic fibers increase
the average tangent stiffness of the cross section. Bendingintroduces both the compressed
fibers and the elastically loaded fibers. A further analysis is carried out on the achieved
cyclic force–displacement curve of the CBT test. The cycle consists of two parts: steady
and transient. The part having a steady level of force represents the deformation of the strip
governed by significant curvature change of the strip because of bending. The transient
increase of the force results from the deformation of the strip by increasing the tension force
with no significant change in strip curvature.
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“Single Point Incremental Forming” (SPIF) is een verplaatsing gestuurd proces dat uitge-
voerd wordt op een CNC machine. Een ingeklemde plaat wordt incrementeel vervormd
door de beweging van een klein gereedschap dat een voorgeschreven pad volgt. De rekken
die bij het SPIF proces behaald worden zijn hoger dan de rekken die bij reguliere omvorm
processen zoals dieptrekken behaald worden. Gedurende de afgelopen twee decennia moti-
veerde dit veel onderzoekers om de achterliggende procesmechanica te bestuderen, hoewel
een sluitende verklaring nog steeds ontbreekt. De eindige-elementenmethode is een krach-
tig hulpmiddel in het bestuderen van omvormprocessen. Vergeleken met bijvoorbeeld het
dieptrek proces, is een eindig-elementenmodel voor het SPIF proces relatief eenvoudig.
Echter, simulatie van het proces is een uitdagende taak vanwege de benodigde lange reken-
tijden. Als gevolg van het uitvoeren van duizenden belastingincrementen op een relatief
fijn eindige-elementenmodel neemt de rekentijd snel toe. Dit beperkt het gebruik van de
eindige-elementenmethode tot enkele vereenvoudigde academische gevallen die overigens
ook al weken aan rekentijd vereisen. De focus van dit werk is het efficiënt toepassen van
de impliciete tijdintegratiemethode om de vereiste rekentijd voor simulaties van het incre-
menteel omvormproces te verkorten.

Vanwege de lokale plastische deformatie ondervindt eendeel vanheteindige-elementennet
in de buurt van het gereedschap een sterke niet-lineariteit. Deze niet-lineariteit is een com-
binatie van materiaal- en geometrische niet-lineariteiten. Het overige deel van het eindige-
elementennet dat het elastisch vervormde deel van de plaat modelleert, ondervindt alleen
een zwakke geometrische niet-lineariteit. Het gebruik vande standaard Newton methode is
noodzakelijk vanwege de sterke niet-lineariteit in de set van vergelijkingen. Het is echter
een kostbare procedure en bovendien inefficiënt in gebruik voor het elastisch vervormende
deel. Een alternatieve aanpak is daarom noodzakelijk die zowel nauwkeurig als efficiënt is
met betrekking tot de rekentijd voor verschillende delen van het eindige-elementennet.

De volledige niet-lineaire Newton benadering is gebruikt voor de lokale plastische de-
formatie. Het resterende deel van het eindige-elementennet, wat elastisch vervormd wordt,
is behandeld met behulp van een pseudo niet-lineaire benadering. De pseudo niet-lineaire
benadering past slechts éénmaal per increment, of over een aantal incrementen, een niet-
lineaire geometrische en materiaal correctie toe voor de tangentiële stijfheidsmatrix en de
interne krachtvector. De tangentiële stijfheidsmatrix wordt hergebruikt in het increment
zoals ook toegepast wordt in de gemodificeerde Newton methode. De interne krachtvector
wordt lineair geupdate door de vermenigvuldiging van de tangentiële stijfheidsmatrix en de
incrementele verplaatsingsvector. Dit resulteert in een relatief efficiënte correctie procedure
in vergelijking met de Newton methode.
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De opdeling van het eindige-elementennet in domeinen met verschillende correctie
strategieën (iteratief, incrementeel en multi-incrementeel) kan gedaan worden met behulp
van verschillende indicatoren. Drie indicatoren zijn ontwikkeld voor incrementeel plaat-
omvormen om de domeinen in algemene zin te definiëren. Deze indicatoren zijn gebaseerd
op de huidige locatie van het gereedschap, de plastische deformatie in het vorige belasting-
increment en de vormverandering in het vorige belastingincrement. De positie-indicator en
de plastische-geschiedenis-indicator zijn geschikt om het eindige-elementennet in de ite-
ratieve en incrementele update strategie te classificeren.De geometrische indicator wordt
gebruikt om te bepalen of een correctie in een multi-incrementeel domein noodzakelijk is.

Een analytische formule is ontwikkeld voor SPEED wat de prestatie van de efficiënte
impliciete methode meet in het versnellen van de standaard impliciete simulatie van een
incrementeel omvormproces. Het is gedefinieerd als de verhouding van de CPU tijd van
een Newton increment en een increment van de efficiënte impliciete methode. SPEED
is afhankelijk van verschillende factoren: aantal benodigde iteraties per increment, toege-
paste correctie strategie, domeingrootte en kosten van de hoofdonderdelen van de Newton
iteratie (opstellen van het stelsel van vergelijkingen, oplossen en bepaling van de spannin-
gen). Voor een simpel materiaalmodel en eindige-elementtype kan de efficiënte impliciete
methode een SPIF simulatie, met een verwaarloosbare iteratieve zone en verwaarloosba-
re oplossingskosten, versnellen met een factor ongeveer gelijk aan het aantal te gebruiken
iteraties per increment. Bovendien wordt adaptieve elementennet verfijning gecombineerd
met de efficiënte impliciete methode, resulterend in een extra versnelling van de impliciete
simulatie van het SPIF proces.

Daarnaast wordt in dit proefschrift een fundamentele studie gepresenteerd van een spe-
cifiek aspect van de procesmechanica die plaatsvindt in het SPIF proces. Deze studie is
uitgevoerd op een proces waarbij continu gebogen wordt onder trekbelasting (Continuous
Bending under Tension, CBT). Dit heeft het voordeel dat het 3-dimensionale complexe
buiggedrag in het SPIF proces gereduceerd wordt tot een 2-dimensionaal probleem. Het is
aangetoond dat het gecombineerd buigen en trekken de deformatie van een strip tot hoge
rekniveaus kan stabiliseren. Voor een constante buigradius is een toename van de kracht
noodzakelijk om een stabiele deformatie te introduceren. Deze conditie vereist dat de gemid-
delde tangentiële stijfheid groter moet zijn dan de gemiddelde spanning. De aanwezigheid
van drukspanningen vermindert de gemiddelde spanning, terwijl de elasticiteit de gemid-
delde tangentiële stijfheid van de dwarsdoorsnede doet toenemen. Buiging introduceert
zowel vezels belast op druk als elastisch belaste vezels. Een verdere analyse is uitgevoerd
op de behaalde cyclische kracht-verplaatsingscurve van deCBT test. De cyclus bestaat
uit twee delen, respectievelijk met een stabiel krachtniveau en een krachtpiek. Het deel
dat een stabiel krachtniveau ondergaat representeert de deformatie van de strip veroorzaakt
door een significante verandering van de kromming van de strip als gevolg van buiging. De
transiente toename van de kracht resulteert uit de deformatie van de strip als gevolg van de
trekkracht toename zonder significante verandering van de buigradius.
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1. Introduction

In ancient times, if you were a knight looking to buy new chestarmor you would search
for a skilled blacksmith. Our skilled blacksmith used his hammer, among many simple
tools, and he shaped an initially flat sheet into chest armor.Focusing on the procedure of
producing the armor, it can be imagined that the blacksmith will start by warming the sheet
then start hammering it; then he may use a rod with a round tip to create a proper curvature
that matches the chest shape of the knight. If the knight can afford more coins perhaps the
blacksmith will offer more fancy details and create a uniquechest armor. In this case, the
blacksmith definitely will leave a remarkable fingerprint soeverybody will know who is the
father of this unique piece. Sadly, neither the blacksmith nor the knight were interested in
simulating the incremental forming of the sheet into a chestarmor using simple tools or in
studying the fundamental mechanics of the process.

1.1 Incremental sheet forming

Incremental forming is a common characteristic of several processes like ring rolling, spin-
ning and asymmetric incremental sheet forming AISF. In these processes, a forming tool
deforms a workpiece to the required geometry by a sequence ofsmall and localized plastic
deformation. Regardless of the size of the tool, the formingtool has a small contact area
with the workpiece. During the process, the contact area (forming tool) travels all over the
workpiece several times in loops or revolutions. Within theloop, a portion of the workpiece
deforms plastically for a small time interval compared to the total process time. After each
loop, the initial geometry is gradually changed toward the desired final geometry.

The process time becomes even longer when the small contact area changes from line-
like (rolling) to point-like (asymmetric incremental sheet forming). Asymmetric incremen-
tal sheet forming appears in several configurations. The simplest is single point incremental
forming (SPIF) where a clamped sheet is deformed by a small spherical shaped tool mounted
on a CNC machine (Isekiet al., 1989). The basic idea was introduced by Mason (1978).
Two point incremental forming (TPIF) has the same configuration as SPIF but it uses a par-
tial or full die to produce more diffcult details (Matsubara, 1994). Kinematic incremental
sheet forming (KISF) uses another moving forming tool instead of the fixed die in TPIF
(Meieret al., 2007; Maidaganet al., 2007).

It is known from the literature that the AISF process is favourable for prototyping and
small batch production. It is a very flexible process; changing the followed tool path results
in producing new geometry (product). Products that were successfully produced by AISF
include a headlight (Jeswiet and Hagan, 2001), a stiffeningbrace (Hirtet al., 2005), an ankle
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support (Ambrogioet al., 2005a) and a cranial implant (Duflouet al., 2005). An extensive
overview of the asymmetric incremental sheet forming process has been presented by Jeswiet
et al. (2005); Bambach (2008); Emmenset al. (2010). A high strain can be achieved in
the incremental sheet forming process compared to the achievable strain in a deep drawing
process. Several mechanisms that might explain the increased formability are proposed in
the literature (for an overview of proposed mechanisms see Emmens and van den Boogaard
(2009b)), but a definite explanation is still missing. Nowadays, the finite element method
(FEM) is a powerful tool in studying and investigating metalforming processes. It provides
insight details for the material during the forming process. The simplicity of the SPIF
process in real-life makes it easy to create a FEM model for this process. The forming tool
can be modeled by an analytical sphere, a discretized numerical blank models the workpiece
and suppressing the edges of the blank models the process boundary conditions. Finally,
prescribing the displacements of the numerical sphere models the displacement–controlled
process.

Still, simulating the SPIF process by FEM is a major challenge. Because of the small
contact area, a relatively fine mesh is used to discretize theworkpiece in finite elements.
Also, thousands of load increments are used to model the loadhistory. The standard use
of the well-known integration schemes (the explicit and theimplicit) requires tremendous
calculation times. For a small and simple academic case study, the calculation time can
extend to weeks using a modern computer. The explicit time integration scheme has options
that reduce the computing time significantly but the achieved results are not satisfactory. The
implicit time integration scheme is accurate but it is computationally expensive. Because
of accuracy, current research focuses on an efficient implementation of an implicit time
integration scheme, dedicated to incremental sheet forming.

1.2 Objective and outline

The main objective of the work presented in this thesis is to simulate the incremental sheet
forming process efficiently: accurate and fast. A method is proposed based on the im-
plicit time integration scheme. Basically, the proposed method has to maintain the achieved
accuracy by the implicit time integration scheme and to reduce its computational cost signif-
icantly. The proposed method is validated by simulating a demonstrative case study of SPIF.
Additionally in this thesis, a fundamental study on the process mechanics of a particular
type of incremental sheet forming is introduced, namely thebending under tension process.

Outline

A major part of this thesis focuses on simulating incremental sheet forming efficiently. The
efficient simulation story starts in Chapter 2. A basic studyon the evolution of nonlinearity
in the sheet deformed by the SPIF process reveals that a localised strong nonlinearity is
observed in the system of equations for the degree of freedoms that are currently located
in the localised plastic deformation zone in the vicinity ofthe forming tool. This strong
nonlinearity requires the iterative procedure of the implicit time integration scheme. The
major part of the system of equations experience only a weak nonlinearity and it does not
require the expensive iterative procedure. This sheds light on the fact that the standard use
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of the implicit time integration scheme in SPIF is inefficient with respect to the computing
time. Therefore, a mixed treatment within the implicit timeintegration scheme is developed
to treat each part as efficiently as it requires.

After the basic chapterAspects of SPIF modelling, readers with different interests have
more elective choices. These choices focus on different issues: the implementation of
the method, the applicability of the method to other incremental forming processes and the
flexibility of the method to be integrated withothernumerical techniques. Being interested in
the implementation of the efficient implicit method in a standard implicit scheme, Chapter 3
is the chapter to read. A super element based implementationis introduced there. Three
different indicators are used to classify the super elementfor different treatments during the
incremental procedure. These indicators are developed forthe SPIF process and they are
based on the current tool location, the plastic deformationin the previous increment and the
change in shape.

If the applicability of the efficient implicit method for other incremental forming pro-
cesses is your interest, you can read Chapter 4 after the basic chapter. The computational
benefit of the efficient implicit method is measured by a speeding factor. An analytical for-
mula is introduced to predict in advance the expected speeding factor that can be achieved
by the efficient implicit method for a particular incremental forming simulation. Before
implementing a single line of programing code, you can decide based on the outcome of
this formula if it is (not) worth implementing the efficient implicit method.

The major interest of a developer is the flexibilityof the method to be combinedwith other
numerical techniques in order to enhance the computationalperformance of the method.
Two numerical techniques are discussed in Chapter 5. The first technique is the static con-
densation. It is implemented into the efficient implicit method. A study on the performance
of the enhanced method is presented. The second technique isadaptive remeshing that
shows a high potential to enhance the performance of the simulation. A study on remeshing
for the SPIF process is presented also in that chapter.

Two real-life incremental forming processes are simulatedby the efficient implicit
method in Chapter 6. The first application is to simulate the production of a pyramidal
shape by the SPIF process. The second application is the simulation of multi-point incre-
mental forming of a strip by a roll set.

Additional to the numerical part in this thesis, a fundamental study on the process
mechanics of a particular SPIF process is introduced in Chapter 7. The study is carried
out on a strip which is deformed by continuous bending under tension. This deformation
mode has similarities with the deformation that takes placein the SPIF process. Based
on a relatively simple material model, the achieved cyclic force–displacement curve of the
process is explained. A numerically derived stability criterion is introduced that sheds light
on the importance of bending in stabilizing the forming process. Finally, the conclusions
from this research are summarized in Chapter 8.





2. Aspects of SPIF modelling

Single Point Incremental Forming (SPIF) is a challenging process to simulate. The sim-
ulation challenge is introduced in forming a blank using a small forming tool. The tool
has to travel all over the blank in a lengthy forming path resulting in a slow process and
tremendous simulation computing time. This chapter focuses on the numerical challenge
that is summarized in simulating thousands of increments for a relatively fine FE mesh. A
brief overview on the most used numerical schemes: explicitand implicit time integration is
given in Section 2.1. A decision is made in favor of the implicit procedure, therefore implicit
simulation of SPIF is studied in Section 2.2. In particular,the influence of localised plastic
deformation on the numerical nonlinearities that are introduced in the load increments is
studied. Based on that, efficient approaches are introducedin order to reduce the incremen-
tal cost of the standard Newton method. These approaches arethe mixed Newton–modified
Newton (NmN) approach and the coupled plastic with pseudo-linearelastic approaches: the
two domain and the three domain, described in Section 2.3

2.1 SPIF modelling

Single Point Incremental Forming (SPIF) is a displacement controlled process performed
on a CNC machine. A clamped blank is deformed by the movement of the tool that follows
a prescribed tool path (Isekiet al., 1989), a sketch of SPIF is presented in Figure 2.1. An
extensive overview of the process has been given by Jeswietet al. (2005); Emmenset al.
(2010). The tool size plays a crucial role in the SPIF processfor both the physical process
and the numerical simulation. The small radius of the forming tool concentrates the strain at
the zone of deformation in the sheet under the forming tool. The tool has to travel a lengthy
forming path all over the blank to introduce the deformationresulting in a slow process in
real life. The deformation in SPIF is classified as localisedplastic deformation (Hirtet al.,
2002). According to this hypothesis, plastic deformation is localised in a small zone in the
region of the forming tool surrounded by elastic deformation of the rest of the blank. The
final geometry of the product is achieved by moving the local forming zone all over the
blank in a lengthy toolpath. As the tool moves, a small portion of the material is plastically
deformed and the material portion that just had been deformed starts to springback. This
causes a simultaneous localised springback in the vicinityof the tool (Bambachet al., 2009).

Numerically, SPIF requires enormous computing time regardless of the type of the solu-
tion procedures (explicit or implicit) for two reasons. First of all, modelling the sequence of
small deformation increments requires thousands of numerical increments to be performed.
Using too large numerical increments results in simulatinga large number of penetrations
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Figure 2.1: SPIF process sketch.

instead of continuous incremental forming. Secondly, the small contact area between the
forming tool and the blank requires a fine FE mesh to capture the introduced deformation
by the small radius of the tool. Because of the large number ofnumerical increments for
the relatively fine FE mesh, the overall computing time for SPIF simulation is much larger
than e.g. for deep drawing simulation.

2.1.1 SPIF: explicit or implicit

Both solution procedures, the explicit and the implicit time integration algorithms are avail-
able in commercial FE codes. The dynamic explicit algorithmthat is based on the central
difference scheme is the most used in practice. Using a diagonalized mass matrix, the ex-
plicit algorithm does not need to solve a coupled system of equations. Instead the nodal
displacement and the nodal velocity are easily updated by scalar equations. No unbalance
force is checked because the difference between the internal and the external force is used to
determine the nodal acceleration, the velocity and then thedisplacement. For these reasons,
the dynamic explicit method is fast and robust and these are the significant advantages of
the algorithm (Belytschkoet al., 2007).

The major drawback of the algorithm is that it is conditionally stable. This imposes
a critical, maximum, time step that can be approximated for continuum elements by the
smallest time needed for a wave to cross one element. For a simulation of a material like
steel, the wave speed

√
E/ρ is in the order of km/s combined with element size in the order

of mm that scales the critical time in order ofµs (Van den Boogaardet al., 2003). The time
lapse in SPIF is in order of minutes to hours leading to a minimum of 107−108 increments,
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which is prohibitivelysmall. For this reason, explicit simulation needs more computing time
than implicit method (Henrard, 2008). To overcome the smallcritical time step, the dynamic
explicit method is enhanced by mass scaling. Increasing themass increases artificially the
material density, that decreases the wave speed and increases the critical time step. Another
equivalent approach for rate independent material is time scaling e.g. to increase the forming
tool velocity.

Many researchers used one of these approaches to increase the critical time step in their
explicit simulation. For instance, a study on warm incremental forming shows that scaling
the mass 100 times reduces the computing time of the standardexplicit simulation almost
by factor 8.5. The use of a larger mass scale factor results in a significant deviation of
the calculated result as reported by Kimet al. (2008). Ambrogioet al. (2005b) observed
a significant time reduction in explicit SPIF simulation by increasing the tool velocity
artificially 2400 times. The ratio of kinetic energy to internal energy is limited to 10 %
but the achieved time reduction is at the expense of accurcy and the provided results were
not satisfactory. For springback analysis in deep drawing,explicit methods require the
same or even more computation time as the complete forming phase (Rojeket al., 1998).
The implicit method can perform the springback phase in a fewincrements. Therefore,
the forming phase is performed explicitly and often the springback is performed implicitly
(Dejardinet al., 2008). In conclusion, the computing time for explicit methods can be
reduced significantly by mass scaling or time scaling but at the expense of accuracy.

For implicit calculations, the Newton (also called Newton–Raphson) method is the
most widely used iterative method. It iterates on equilibrium of the internal and the external
force using a stiffness matrix (ignoring the inertia for quasi–static processes). The major
advantage of the implicit method is the unconditional stability. Because of that, the size
of the increment used in an implicit method is much larger than the explicit increment
size. The increment size is limited by the accuracy requirement and the robustness of
the Newton procedure (Belytschkoet al., 2007). The implicit method is preferred for its
accuracy. SPIF implicit simulations show better agreementwith experiments than explicit
simulations. Bambachet al. (2005) observed a better prediction of the achieved geometry
and Ambrogioet al. (2005b) reported a better prediction of the sheet thinning.

The major disadvantage of the implicit scheme is the large computing time. Performing
a large number of increments for a relatively fine mesh limitsSPIF implicit simulation to
small academic tests. Several approaches have been proposed to maintain the accuracy and
to speed up the implicit simulation. For incremental forming, a multi–mesh method has
been proposed. The method requires two meshes: a fine mesh fordata storage and another
mesh that is mainly coarse with a fine mesh part to model the deformation in the small
contact area. The simulation is performed in the coarse meshand the data is transferred
between both meshes using a special operator. The computingtime basically is reduced
compared to the computing time of performing the simulationusing the fine mesh. A recent
publication of multi–mesh implementation is done by overlapping domain decomposition
but only a small deformation has been introduced (Brunssen and Wohlmuth, 2009). On
the thermo-mechanical simulation of a cogging process (Ramadanet al., 2009), a parallel
two mesh method is used. The thermal analysis is performed ona fine mesh coupled to a
mechanical analysis on a coarse mesh. Significant reductionin computing time is achieved,
compared to coupled analysis on the fine mesh, because the most expensive mechanical
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analysis is performed on the coarse mesh. The idea of decoupling is also applied on (only)
mechanical problems by Sebastianiet al. (2007). The difference here is that the FE mesh
is decoupled into an elastic part and an elastoplastic part.These separated two parts are
alternately solved so that the results of one partial model provides boundary conditions for
the other, a case study of small deformation is presented.

Another proposal is the use of adaptive remeshing. The basicadvantage is to keep the
number of degrees of freedom as low and efficient as possible that reduces the computing
time compared to a fine mesh. One level of refining and coarsening is implemented by
Hadoush and van den Boogaard (2008) for SPIF simulation and it is speeded up twice.
Also, the use of parallel computing is reported in literatures e.g. Quigley and Monagan
(2002) simulated spinning process using domain decomposition method. The previously
mentioned methods for speeding implicit simulations focuson efficient modelling or the use
of more computing power but not on efficient implementation of the iterative procedure. In
conclusion: implicit method is accurate and expensive computing-wise but there is room to
speed the procedure and maintain the accuracy. In the following sections more details are
introduced to understand the Newton procedure performancein order to use it efficiently.

2.2 Implicit solution procedure

In SPIF, the tool size is much smaller than the workpiece size. The tool deforms the
workpiece consequently by small increments. The small deformation increment consists of
plastic deformation in the vicinity of the tool embedded in an elastic deformation of the rest
of the workpiece. In implicit simulation of SPIF, the plastic deformation introduces a strong
nonlinearity in the system of equations (SOE). The strong nonlinearity is a combination of
material and geometrical nonlinearity. The elastically deforming part of the workpiece
introduces a weak geometrical nonlinearity in the system ofequations. To emphasize the
strong–weak nonlinearity hypothesis in SPIF, a case study of plastic loading followed by
elastic unloading of a blank (penetration test) is studied.

2.2.1 Plastic loading and elastic unloading of a blank

In this test, the strong–weak hypothesis is investigated inthe simulation of tool penetration
and retraction on a clamped plate. This is representative for the first and last stage of an
ISF process. A plastic deformation is introduced by moving aspherical tool that is initially
just in contact, 2 mm downwards. Then the blank is relaxed by moving the tool away. The
deformation and the relaxation are performed in 20 increments and 5 increments (a load
increment of 0.1 mm is used), respectively. The FE mesh and position of the tool are shown
in Figure 2.2.

The numerical blank of 100× 100× 1.2 mm3 is discretized with 6400 triangular shell
elements. The element type is the discrete Kirchhoff triangle DKT for bending (Batozet al.,
1980), combined with a linear membrane element. The elementhas 6 DOFs per node, 3
translational DOFS (Ux,Uy,Uz) and 3 rotational DOFS (θx, θy, θz). It has 3 integration
points in plane and 7 in thickness direction (in total 21). The tool is modelled by a 20 mm
diameter analytical sphere. The material model is representative of mild steel and it is kept
as simple as possible. The isotropic yield behavior of the material is modelled with the von
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Figure 2.2: A sketch of the penetration test, a sample of FE mesh and the tool position.

Mises criterion. The work hardening is governed by the powerlaw:

σ = 500(ε + 0.00243)0.2 (2.1)

Whereσ andε are the flow stress and the equivalent plastic strain, respectively. The material
has a Young’s modulus of 200 GPa and Poisson’s ratio of 0.3. For a realistic calculation, it
is acknowledged that a better material model is required, that includes e.g. the anisotropic
behavior of the sheet. The calculated vertical force on the tool is plotted in Figure 2.3. In
the loading stage, the plate is deformed plastically near the tool and a nonlinear prediction
of the force is observed. In the unloading stage, the plate shows elastic springback.

The simulation is implicitly performed using the Newton iterative procedure imple-
mented in the in–house FE code DiekA. A mechanical unbalanceratio of 0.001 is used
for checking the convergence. The number of iterations required per increment during the
simulation is plotted in Figure 2.4. For the loading stage, most of the increments require
3 iterations per increment (on average 2.8 iterations/increment). During unloading, the
first unloading increment, increment number 21, requires 6 iterations and 2 line searches
because of the sharp transition of loading–unloading. All the unloading increments require
more than 1 iteration to converge hence a geometrical nonlinearity is involved. Within the
increment before the last, the tool–blank contact is lost and that explains the kink in the
unloading path. The last unloading increment requires 2 iterations because of the use of
relative unbalance criterion. Actually, the unbalance force is very small. The incremental
cost is the multiplication of iteration cost by the number ofiterations consumed in the in-
crement. The iteration cost, on average, is 2.45 s. As expected, increment 21 has the largest
CPU time of 15 s since it requires the largest number of iterations. The total CPU time is
179.3 s. This simulation is performed on a single core of Sun FireX4450 server with Intel
Xeon X5365, this machine will be used for all simulations presented in this thesis unless
another machine is mentioned.
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Figure 2.3: The predicted force displacement curve of the penetration test.
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Figure 2.4: Number of iterations for the penetration test.

2.2.2 Strong–weak nonlinearity

The test introduced in the previous section is used to emphasize the strong–weak nonlin-
earity. Incrementally, a small region of the blank is plastically deformed and it is located
in the vicinity of the forming tool. The rest of blank is elastically deforming. The achieved
equivalent plastic strain at the end of the loading stage is shown in Figure 2.5. The presented
result of the equivalent plastic strain is related to the upper integration point in thickness
and the same distribution is observed for the rest of the integration points through thick-
ness. The maximum achieved equivalent plastic strain is 0.169. Near the close edges a
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Figure 2.5: The achieved upper equivalent plastic strain, left the scale is 0− 0.17. The scale is
reduced to 0.001− 0.02 in the right figure.

relatively small plastic strain is observed. The plastic deformation is a form of material
nonlinearity. The localised plastic deformation near the tool indicates that this part of the
material experiences a higher level of stress compared to the rest. The nonlinearity due to
elastic–plastic transition is much larger than the nonlinearity due to change of shape. The
vertical displacement at the end of the loading stage is plotted in Figure 2.6. Clearly, a large
displacement gradient is noticed near the tool resulting ina large rotation that is the main
geometrical nonlinearity. The geometrical nonlinearity effect in the blank is strong in the
vicinity of the tool and it is relatively weak away from the tool.

As a consequence of the localised plastic deformation near the tool, a combination of
material and geometrical nonlinearities forms a strong nonlinearity. The rest of the blank
experiences a weak geometrical nonlinearity and it will be referred to as weak nonlinearity.
To study the strong–weak nonlinearity during the iterativeprocedure, the residual force
(unbalance between the external force and internal force) of 2 nodes are recorded for the
entire simulation. One of these nodes is located under the tool (strong) while the other one
is located at the center of the blank (weak). For the same node, the residual force in vertical
direction has the most significant residual contribution compared to the other DOFs, for
that the residual force in vertical direction is plotted in Figure 2.7. Noticing the logarithmic
scale, it becomes clear that the DOF in the vicinity of the tool has a large residual value
and it is reduced significantly with the iterative procedure. The residual has to be reduced
to a certain tolerance. The residual of the central DOF in theweak nonlinearity region is
negligible compared to the residual value in the strong nonlinearity region. This holds for
all increments.
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Figure 2.6: The vertical displacement at the end of the loading stage of the penetration test.

2.3 Efficient implicit simulation of localised deformation

Based on the classification of strong and weak nonlinearities in the previous section, it is clear
that the strongly nonlinear part of the system of equations requires fully nonlinear iterative
treatment. It is an expensive treatment. The rest of the system of equations represents a large
elastic part, which does not need such expensive treatment but it has to be created to solve
the system of equations. For the sake of understanding, the implicit scheme is summarized
briefly.

The Newton–Raphson method updates an incremental displacement vectord with an
iterative displacement vector1d, using the tangent of the nonlinear system of equations
K (d) by solving

R(d)+ K (d)1d = 0 (2.2)

where the residualR(d) defines the difference between the internal forces and the external
forces

R(d) = fint(d)− fext(d) (2.3)

The Jacobian system matrixK (d) or in engineering terms the effective tangent stiffness
matrix (stiffness matrix), is equal to

K (d) =
∂R

∂d
=
∂ fint

∂d
−
∂ fext

∂d
= K int − Kext (2.4)

whereK int andKextare the tangent stiffness matrix and the load stiffness matrix, respectively.
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Figure 2.7: The residual evolution, the vertical dashed line indicates the end of an increment, the
marker indicates the iterative residual value.

The linearized model is solved for the iterative change of the nodal displacements1d

1d = −K −1R (2.5)

the iterative change of the nodal displacements is added to the total incremental nodal
displacements

d j +1 = d j +1d (2.6)

where j is the iteration number. If convergence is not achieved, thelinearized model is
recalculated and solved for a new1d. Here, the residual is checked for convergence by the
mechanical unbalance ratio criterion. The mechanical unbalance ratioψ is the ratio of the
l2 norm of the residual to thel2 norm of the internal force

ψ =
‖R‖

‖Rint ‖
(2.7)

The Newton iteration cost can be split into three parts (Van den Boogaardet al., 2003). The
first part creates the linearized model (2.2) this includes the creation of the tangent stiffness
matrix and the internal force vector (BUILD). Secondly, solving the system of equations
(SOLVE) for the iterative displacement (2.5). The last partis to update the stresses based
on the actual displacement (UPDATE). This means that a largepart of the computing power
is used inefficiently for updating the large elastic part. Using a relatively less expensive
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iterative procedure like the modified Newton to create the entire system of equation does
not reduce the overall computing time even though it reducesthe cost of the BUILD phase
on the iteration level. Based on experience, the modified Newton method requires a large
number of iterations per increment and smaller increment sizes to converge compared to
the full Newton approach.

For such localised numerical nonlinearities in system of equations, it becomes necessary
to have different treatments that are accurate and computationallyefficient for different parts
of the FE mesh. Similar approaches are reported in the literature for mixed treatment in
computational mechanics e.g. the subcycling in explicit methods to overcome the problem
of very small or very stiff elements Belytschkoet al. (1979). Another approach is the
implicit–explicit method, where part of the system Jacobian matrix is treated implicitly
and part explicitly Hughes and Liu (1978). In the following sections, the internal force
vector and the tangent stiffness matrix for the localised plastic deformation part are updated
for every iteration using the full Newton method. For the elastically deforming part of
the FE mesh, the internal force vector and the tangent stiffness matrix are treated either
by modified Newton method or pseudo-linear approach. The entire system of equations
is solved for each iteration, but the domains are treated differently. The purpose of such
treatment in the localised deformation implicit simulation is to reduce the overall CPU time.
The implementation and testing is done in the in–house FE code DiekA.

2.3.1 Mixed Newton–Modified Newton

As it is observed in SPIF, the system of equations is assembedof two types of DOFs
with respect to the nonlinearities. The first type experiences a strong nonlinearity and the
second type has a weak nonlinearity. It is recommended to have fully nonlinear Newton
treatment for the strong type nonlinear DOFs because of its quadratic convergence. In this
treatment,K and fint are updated every iteration including the geometrical and the material
nonlinearities. Contact, or changing the boundary conditions, introduces a nonlinearity in
the system of equations even for the linear elastic system. The DOFs near the tool have
high chances to make contact or to lose contact with the forming tool. Therefore, iterative
treatment is necessary for these DOFs in order to predict thecontact. The weak nonlinearity
in the second type of DOFs is treated by the modified Newton method. In this treatment,
the fint is updated fully nonlinear and this is similar to the Newton approach.

The difference between the Newton method and the modified Newton method is the
treatment of the effective tangent stiffness matrix. In themodified Newton method,K is not
updated iteratively, instead a previously calculatedK is reused. This previously calculated
stiffness matrix might be calculated at the start of the increment or several increments before
(Zienkiewicz and Taylor, 2005). Here, the stiffness matrixis calculated at the beginning
of each increment including the geometrical and material nonlinearities. Within only one
increment, the stiffness matrix is reused and it is updated nonlinearly at the beginning of the
next increment. It is worth mentioning that the residual andthe stiffness matrix of the FE
mesh that is treated by the modified Newton method has no external contribution. Iteratively,
the global effective tangentKGlob is assembled of the iteratively updated stiffness matrix
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and the incrementally updated stiffness matrix

K Glob =
I T E
∑

e=1

K Iter
e +

I N E
∑

e=1

K Incr
e (2.8)

where the superscript abbreviation Glob, Iter and Incr are global, iterative and incremental,
respectively. Actually, it is an assembly operation not a simple summation operation and it
is used for convenience. The assembly operation is performed over the number of iterative
elements ITE and the number of incremental elements INE for the iterative and incremental
stiffness matrix, respectively. The global residual forcevector is assembled

RGlob =
I T E+I N E

∑

e=1

Re (2.9)

the residual force vector for all elements in FE mesh is iteratively updated. Now, the entire
system of equations is solved for1d (2.5) and the total increment is updated (2.6). The
new internal force vector is found and the convergence is checked (2.7).

This mixed Newton–modified Newton (NmN) approach is appliedto the penetration
test. The FE mesh is classified into a strong nonlinear part, in the vicinity of the tool,
that is colored in gray in Figure 2.8 and the weak nonlinear part (white), presenting the
rest of FE mesh. The predicted tool force by the NmN approach is, almost, equal to the
prediction achieved by the full Newton approach, Figure 2.9. The maximum error is less
than 0.02 N (0.0025 %) and it has been observed in the unloading stage. This excellent
agreement is achieved by classifying the right elements in the strong nonlinearity group,
applying the full Newton treatment. The residual history ofRz in the strong nonlinearity
region is preserved for amplitude and pattern as shown in Figure 2.10. The same number
of iterations required by the Newton simulation (Figure 2.4), and line search, is consumed
by the mixed Newton–modified Newton approach and in the same order.

The total CPU time of the mixed Newton–modified Newton approach is 157 s that is
22.3 s less than the full Newton approach (179.3 s). In the Newton approach the costs of the
main parts are 1.18 s (48.6%), 0.28 s (11.5%) and 0.97 s (39.9%) for BUILD, SOLVE and
UPDATE, respectively. The reduction in the overall CPU timeis achieved by reducing each
increment cost as plotted in Figure 2.11. In this case study,the NmN approach applies fully
iterative treatment for 36% of elements (gray area in Figure2.8) and 64% of the elements are
treated by the modified Newton method. The cost of the first iteration in the NmN approach
is the same as the Newton approach and that is independent of split ratio of elements into
Newton or modified Newton within NmN. After the first iteration, the BUILD CPU cost,
in NmN, is reduced because the stiffness matrix of 64% of the elements is not calulated
again. The BUILD CPU cost becomes the cost of calculting the stiffness of 36% of elements
and the force vector of all elements and it is 0.73 s. The cost of SOLVE is similar for all
iterations because NmN has no interaction with the solver orthe system of equations size.
Also, the UPDATE cost is similar because the modified Newton method is equal to the
Newton method with respect to UPDATE. The reduction in NmN’sincremental cost is a
result of reducing BUILD cost only. The total reduction of the NmN incremental cost is
equal to the reduction in BUILD cost times the number of iterations except the first one. A
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Figure 2.8: Sketch of FE mesh classification into Newton treatment (gray) and modified Newton
or pseudo-linear treatment (white).
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Figure 2.9: A comparison of the predicted force displacement curve by mixed Newton–modified
Newton approach and Newton approach (left), error evolution during the simulation
(right).

large number of iterations per increment increases the reduction in incremental cost. The
maximum reduction in NmN incremental cost is 2.3 s for increment number 21 which uses
6 iterations. To this end, a reduction is observed in the standard Newton incremental cost
by applying the mixed Newton–modified Newton approach and the predicted results have
excellent agreement with the results achieved by the full Newton method.
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Figure 2.10: The strong nonlinearity evolution in mixed Newton–modified Newton and Newton
approaches.
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Figure 2.11: A comparison of the iterations cost between themixed Newton–modified Newton
approach and the Newton approach. The first iteration of eachincrement (left) and
the other iterations (right). The results are presented forincrement number 15.

2.3.2 Two domain approach

In this approach, the FE mesh is split into two parts as in the mixed Newton–modified
Newton approach. The first part contains the strong nonlinearity in the vicinity of the tool
(the gray area in Figure 2.8). It is an iterative part that is nonlinearly updated and predicts
the plastic deformation iteratively. The second part models the elastically deforming part
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of the blank and it is treated pseudo-linearly. It models linear elastic deformation within
the number of increments. The nonlinearity is updated at thebeginning of the increment
or group of increments. Here, the pseudo-linear treatment is applied incrementally. At the
beginning of the increment, the stiffness matrix and the internal force vector is calculated
fully nonlinear that includes the geometrical and the material nonlinearities of the previous
increments. This applies for the entire FE mesh (the plasticand the pseudo-linear elastic
part). The linearized model is assembled, there is no difference in treatment between the
plastic and the elastic parts, to this point. The system is solved at once for1d.

In the strong nonlinearity zone, the new stress state is nonlinearly updated. This is an
expensive procedure because an iterative procedure is usedto find the balance between the
elastic and plastic strain, it is often referred to by returnmapping algorithm. This procedure
is performed on the integration point level. The new internal force vector is determined and
the contribution in the residual vector is created. The weaknonlinearity zone (elastically
deforming) is treated with a less expensive approach. The stresses are assumed to be linearly
and elastically related to the strains. As a consequence, the internal force vector is updated
linearly by the multiplication of the stiffness matrix and the incremental displacements as

f j
int = f 0

int + K 0
intd

j (2.10)

the residual contribution of the linear elastic has no external force contribution. The global
residual is assembled

RGlob =
I T E
∑

e=1

RIter
e +

I N E
∑

e=1

RIncr
e (2.11)

The convergence is checkedandoften more iterations are required. In the following iteration,
K and fint of the plastic part are nonlinearly updated. TheK of the elastically deforming
FE is not updated and kept constant as it is treated in the mixed Newton–modified Newton
approach while thefint is linearly updated as in (2.10) instead of being updated nonlinearly.
The KGlob is assembled of the iteratively updated part and the incrementally constant part
as in (2.8). The residual force vector is assembled of the iteratively updated part and the
linearly updated elastic part as in (2.11). The linearized model is created and solved and so
on.

The performance of the two domain approach is tested using the penetration test. The
predicted tool force by the two domain approach has a very good agreement with the
prediction achieved by the Newton approach as shown in Figure 2.12. The maximum error
in the force prediction is observed during the unloading stage. A maximum error of 0.9%
(less than 2 N) at the third unloading increment is found, which is within the acceptable
limit. During the loading stage, the same number of iterations per increment is used by
the two domain approach as in the Newton approach. TheRz convergence behaviour of
the strong nonlinearity by the two domain approach coincides with the prediction by the
Newton approach, Figure 2.13. The two domain has a similar behaviour as the Newton
approach during the unloading stage except for a slight difference for the first unloading
increment. Both approaches perform similarly for the first 3iterations of the first unloading
increment. At the fourth iteration, The two domain has a global unbalance of 0.00098 while
the Newton has a global unbalance of 0.00102, a convergence tolerance of 0.001 is used
in both simulations. The Newton approach requires one more iteration to converge. At
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Figure 2.12: A comparison of the predicted force displacement curve by the two domain approach
and the Newton approach (left), error evolution during the simulation (right).
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Figure 2.13: The strong nonlinearity evolution in two domain and Newton approaches for the
loading stage (left) and the unloading stage (right). The vertical grid indicates the
end of the increment in the Newton approach.

convergence, both approaches have not reached the contact convergence. Another iteration
is required to achieve contact convergence. In this iteration, an increased value ofRz residual
is observed but the global convergence is already achieved.

The overall CPU time of the two domain approach is 121.7 s, that is 57.6 s less than
the CPU time of the Newton approach. The incremental cost is significantly less than
the incremental cost of the Newton approach as shown in Figure 2.14. The reduction in
incremental cost is a result of reducing each iteration cost. Considering increment number
15, the cost of UPDATE is reduced from 0.97s to 0.54s (−44.3%) by two domain, for each
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Figure 2.14: A comparison of the iterations cost between twodomain approach and Newton
approach. The first iteration of each increment (left) and the other iterations (right).
The results are presented for increment number 15.

iteration. The two domain cost of BUILD is equal to the Newtoncost of BUILD for the first
iteration only while a reduction of−54.2% for BUILD is achieved (from 1.18s to 0.54s) by
two domain for the later iterations.

The advantage of the two domain approach over the mixed Newton–modified Newton
approach is related to the stress update procedure in the large elastically deforming FE
part. In the mixed Newton–modified Newton approach, the stress is nonlinearly updated
using return mapping algorithm (expensive procedure). Forthe two domain approach, it is
assumed to be linearly and elastically related to the straintherefore is not updated within the
increment. This less expensive treatment reduces the UPDATE iteration cost significantly
even for the first iteration of each increment. After the convergence of the increment, a
fully nonlinear update of the stress state is performed based on the displacement increment.
This nonlinear evaluation updates the small material and the geometrical nonlinearity. The
material update may introduce a plastic deformation in the proposed elastically deforming
FE mesh that is not checked for equilibrium. Therefore, the size of the plastic region has to
be selected carefully to accurately model the introduced deformation. The cost of updating
the stress state of the pseudo-linear domain is part of the two domain incremental cost and
it is performed once per increment.

2.3.3 Three domain approach

The new part in this approach is the split of the pseudo-linear treatment of the weak nonlin-
earity zone (elastically deforming) into two parts. The first part is a pseudo-linear treatment
within one increment and the nonlinearities is considered at the start of the increment only.
The second part is similar to the first part except that the linearity is assumed for a group
of increments instead of one increment. Now, the FE mesh of the entire model is split into
3 domains as shown in Figure 2.15. The first domain is treated iteratively fully nonlinear,



2.4 Summary and conclusions 21

Figure 2.15: Sketch of FE mesh classification into Newton, iterative, treatment (gray) and incre-
mental pseudo-linear treatment (white) and multi-incremental pseudo-linear treat-
ment (light gray).

the gray colored part. The second domain applies an incremental pseudo-linear treatment
(white part). The multi-incremental pseudo-linear domain(light gray) models the last part.

The penetration test is performed by the three domain approach. The FE mesh is split
into 36% iteratively, 28% incrementally and 36% multi-incrementally updated treatment.
This reduces the overall CPU time to 110 s that is 69.3 s less than the Newton approach
and 11.7 s less than the two domain approach. The lower computing time required by
the three domain compared to two domain is achieved because of updating 43.75% of the
elastically deforming part by multi-incremental and 56.25% by the incremental pseudo-
linear treatment. In the multi-incremental domain, the stiffness matrix and internal force
vector are calculated only once for the entire simulation. The internal force vector is linearly
updated as in (2.10) by the multiplication of the stiffness matrix and the corresponding total
incremental displacements. The evolution of iteration of each increment is similar to the
Newton approach. A very good agreement is achieved in the predicted force–displacement
curve as shown in Figure 2.16 with error less than 0.25% (2 N). To conclude, the two domain
and three domain approaches speed up the standard Newton method by a factor of 1.47 and
1.63, respectively. An important aspect influencing the speeding factor is the ratio of the
elements that are iteratively, incrementally or multi-incrementally treated.

2.4 Summary and conclusions

In this chapter, the challenge of simulating SPIF process ispresented. The challenge,
simply, is using a small size forming tool that introduces plastic deformation locally. This
requires performing thousands of load increments on a relatively fine FE mesh resulting in
enormous computing time regardless of the used numerical procedures: explicit or implicit.
The explicit scheme CPU time can be reduced significantly by the use of mass scaling or time
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Figure 2.16: A comparison of the predicted force displacement curve by the three domain ap-
proach and Newton approach (left), error evolution during the simulation (right).

scaling. This reduction in the overall CPU time of explicit simulation is at the expense of
the achieved accuracy. It is observed that the implicit SPIFsimulation is more accurate than
the explicit in predicting the final geometry and the sheet thinning. The implicit incremental
CPU time is expensive because of the iterative aspect that byitself is expensive. Several
approaches are proposed in order to reduce the SPIF implicitCPU time. Mainly, these
approaches focus on efficient modeling or the use of more computing power.

Because of the localised plastic deformation, part of the FEmesh that is in the vicinity
of the tool experiences a strong nonlinearity. The strong nonlinearity is a combination of the
material and geometrical nonlinearities. The rest of the FEmesh that models the elastically
deforming part of the blank experiences only a weak nonlinearity. It is required to use the
standard Newton method because of the strong nonlinearities in the system of equations
but it is inefficiently used for the large elastically deforming part. Therefore, it becomes
necessary to have different treatments that are accurate and computationally efficient for
different part of the FE mesh. The fully nonlinear Newton treatment is used for the localised
plastic deformation. The rest of the FE mesh that is elastically deforming is treated either by
the modified Newton method or the pseudo-linear approach. The purpose of such treatment
in implicit simulation of SPIF is to reduce the overall CPU time. The implementation and
testing is done in the in–house FE code DiekA.

A case study of localised deformation of a blank using small tool is studied. The overall
computing time for all used approaches is summarized in Table 2.1. Different speeding
factors are achieved based on the treatment of the elastically deforming part. The mixed
Newton–modified Newton speeds up the Newton simulation by 1.14. This is achieved by
the use of the modified Newton approach. The two domain approach applies a pseudo-linear
treatment that has a linear treatment within the increment while the nonlinear treatment is
applied only at the beginning of each increment for the material and geometrical nonlin-
earities. This results in speeding the Newton simulation by1.47. The best performance of
speeding the Newton simulation is achieved by the three domain approach (1.63) because
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Table 2.1: The overall computing time for different approaches. The speeding factor is defined
as the ratio of Newton CPU time, reference, to a particular approach CPU time.

Newton NmN two domain three domain

CPU time (s) 179.3 157 121.7 110

Speeding Factor 1.00 1.14 1.47 1.63

the elastically deforming part is split into two parts. Bothparts are treated pseudo-linearly,
one part is incrementally and the other is for all incrementsthat is even less expensive. In
all proposed approaches, the error in predicting the tool force is less than 1%. The most
accurate approach is the mixed Newton–modified Newton approach. It is clear now that
the SPIF implicit simulation cost can be reduced by applyingefficiently treated zones as
required.

But, several important issues are still open to investigation. First of all, the definition
of partitions that are treated differently is presented fora relatively simple case, fixed in–
plane tool position, while the tool path in a SPIF process is more complex. The ratio of
the partitions has an impact on accelerating the SPIF implicit simulation and it is clearly
defined based on experience. Therefore, automated featureshave to be introduced to notify
the distribution (location) and the optimized size of thesepartitions in order to simulate the
localised plastic deformation efficiently in the simulation of a SPIF process.





3. Adaptive domain classification

In the previous chapter, an efficient implementation of the implicit solution procedure for
localized deformation is introduced. A fixed partitioning of the FE mesh is used for a
simple test in which a blank is plastically deformed by a small tool followed by springback.
The special aspect of incremental sheet forming requires that the small sized forming tool
travels all over the blank in order to introduce the global deformation. For this reason, this
chapter focuses on introducing a procedure that controls the partitioning of the FE mesh.
The main tasks of this procedure are firstly to define the size of each partition and secondly
to define the location and the distribution of these partitions. The major components of
this procedure are super elements and indicators. The main task of a super element is to
organize and manage the data that are used in the implicit procedure, in Section 3.1. Super
elements are generically classified regarding the update frequency (iterative, incremental or
multi-incremental). This is performed by introducing indicators that can define the super
elements classification prior to load increment. The indicators are based on the current tool
location, the plastic deformation during the previous loadincrement and the shape change
during the previous load increment. The indicators are discussed in Section 3.2. The
performance of the efficient implementation of the implicitprocedure combined with the
introduced indicators is investigated by two case studies of incremental forming processes.
The first case is to simulate one loop of SPIF and the second case is to simulate continuous
bending under tension in Section 3.3.

3.1 Super element (substructuring)

The basic idea of grouping a particular FE mesh into several super elements, substructures
or domains is often used in the finite element method for different purposes. It is adopted
early in structural analysis where a complete structure is partitioned into a number of sub-
structures that can be treated as complex structural elements. Internal displacements of the
substructure are condensed to the external (boundary) displacements then the displacement
method, for instance, is applied to the partitioned structure. Each substructure can then be
analyzed separately under known substructure–boundarydisplacements or forces (Przemie-
niecki, 1968). Another use of super elements is to present complex element behavior e.g. a
general beam finite element with deformable cross section isintroduced by Živkovićet al.
(2001). This special element is formulated as a super element that consists of isoparametric
subelements (3D, shell and beam). In this thesis a super element is used in order to organize
the elements tangent stiffness matrix, internal force vector and degrees of freedom. Also, it
facilitates the management of updating these data for each iteration, increment or number
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Figure 3.1: FE mesh of 6400 triangular shell elements partitioned in 100 super elements.

of increments for an efficient implementation of the implicit time integration procedure.
A super element can be one element or a group of elements. A particular FE model is
represented by a group of super elements instead of elements. An example is shown in
Figure 3.1.

The super element tangent stiffness matrixK Super is assembled of the related element
stiffness matrices as

K Super=
SE
∑

e=1

Ke (3.1)

whereSE is the number of elements grouped in the super element. The global tangent
stiffness matrixK Glob is assembled of super element tangent stiffness matrices

K Glob =
SS
∑

s=1

K Super
s (3.2)

whereSSis the number of super elements in the FE mesh. The super element internal force
vector f Super

int , and the global internal force vectorf Glob
int are assembled similarly

f Super
int =

SE
∑

e=1

fint,e (3.3)

f Glob
int =

SS
∑

s=1

f Super
int,s (3.4)

The super element contains also the related incremental displacementd.
Up to this point, the system of equations is assembled of the super elements contributions

and regardless of the frequency of updating these contributions (tangent stiffness matrix and
internal force vector) and the distribution of the superelement based on the update frequency.
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Figure 3.2: FE mesh partitioned into two domains of different update treatment (left). The same
two domains are modeled by several super elements (right) that is 36 and 64 for the
gray domain and the white domain, respectively.

This re–arranges the layout of the implicit time integration procedure and facilitates the
implementation of the efficient implicit procedure based onsuper elements. By the use
of super elements, the FE mesh partitioning presented in Figure 2.8 is modeled by several
super elements per domain, as shown in Figure 3.2. A super element can belong only to
one partition since each partition has a different frequency of updating the super element
contributions. Also, the FE mesh is grouped into non–overlapped super elements. It is
important to mention that the size of the system of equationsis similar to its original size
and the entire system of equations is solved at once.

3.1.1 Implementation of the efficient implicit approach

The efficient implicit approach, introduced in the previouschapter, is implemented by the
use of super elements. The approach splits the FE mesh into iteratively, incrementally
and multi-incrementally updated domains and it accelerates the simulation compared to the
standard Newton simulation that updates the entire FE mesh every iteration. The iterative
treatment updates geometrical and material nonlinearity for the tangent stiffness matrix
and the internal force vector for each iteration. Updating all super elements in a FE mesh
iteratively results in achieving exactly the same results achieved by the standard Newton
method to machine precision and introduces no reduction in the simulation CPU time. The
iteratively updated treatment is recommended for the plastically deforming domain of the
FE mesh.

The incrementally updated treatment of a super element applies pseudo-linear behavior
within the load increment. The tangent stiffness matrix andthe internal force vector are
calculated at the beginning of each increment and that includes the geometrical and the
material nonlinearity. The super element tangent stiffness matrixK Superis assembled once
and it is used for all iterations within the increment, i.e. it is considered constant within
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Figure 3.3: The initial FE mesh of a strip (top) and the FE meshat the end of the deformation
(bottom).

the increment. The super element internal force vectorf Super
int is calculated from the actual

stresses at the beginning of the increment. Then, it is updated linearly within the increment
by the multiplication ofK Superwith the super element’s incremental displacement vector as
presented in (2.10). At the beginning of next load increment, an update of the geometrical
and material nonlinearity is performed forK Super and f Super

int . This update is based on
the converged load increment and the incremental displacements. All elements contained
within the super element are updated. This treatment is recommended for the elastically
deforming part of the FE mesh that experiences a weak nonlinearity because of geometrical
effects (change of shape). It is less expensive compared to the iterative treatment. The
multi-incremental update procedure is similar to the incremental update treatment except it
is performed over a number of increments instead of over one increment.

Validation

A simple test is proposed to investigate the influence of the linearization in an incrementally
treated super element with respect to geometrical nonlinearity. For this purpose, an initially
flat strip of 50× 5 × 1.2 mm3 with elastic material is modelled with 160 shell elements as
plotted in Figure 3.3. The edge on the left of the strip is completely clamped. The edge on
the right is moved 5 mm downwards while the rotations and in–plane translation degrees of
freedom are suppressed. Four increment sizes are considered 0.01,0.1,0.2 and 0.5 mm.

The FE mesh of the strip is grouped in one superelement. Two simulations are carried out
per increment size. In the first simulation, the geometricalnonlinearity is treated iteratively
like in the standard Newton implicit method (Iterative). Inthe second simulation the super
element is updated incrementally (Increment). The geometrical nonlinearity is neglected
within the increment and updatednonlinearly at the beginningofeach increment as explained
before.

To compare the results, the in-plane force (longitudinal) at the right edge for a displace-
ment increment of 0.2 mm is plotted in Figure 3.4. The achieved force by the incrementally
updated approach has a very good agreement with the standardNewton (iterative) approach
with a maximum error of 1.7%. The achieved force by the incrementally updated approach
for the other increment sizes has the same pattern, the erroris plotted in Figure 3.5. As
expected, the largest increment size of 0.5 mm gives the largest error of 4%. In SPIF
simulations the displacement per increment will usually bemuch smaller. Under these
conditions, the incrementally linearized approach can be considered valid. Similarly, the
multi-incremental linearized approach is validated for smaller increments that are grouped
in one large increment.
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Figure 3.4: A comparison between the in-plane force achieved by the incremental update and the
standard Newton approach (iterative) for an increment sizeof 0.2 mm.
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Figure 3.5: The error in reaction force introduced by the incremental compared to the classical
implicit approach.

In general, The FE mesh of an efficient implicit SPIF simulation is made of super
elements with different update strategy. The classification of these super elements and
location is explained in the next section.
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3.2 Indicators for nonlinearity

The task in this section is to generically define the update frequency of a super element
(iterative, incremental or multi-incremental). This is performed by introducing indicators
that can define the super elements classification prior to load increment. These indicators
are based and developed for localized plastic deformation.The indicators are the current
tool location, the plastic deformation in the previous loadincrement and the shape change
in the previous load increment. The motivation for the indicators and their performance are
the topics of the following sections.

3.2.1 Tool indicator

In localized plastic deformation like e.g. SPIF, plastic deformation is introduced in the
vicinity of the forming tool. The influence of the tool diameter in the SPIF process is
reported in the literature. A smaller tool diameter concentrates the strain under the forming
tool and the increase of tool diameter tends to distribute the strain over a more extended
area. As the forming tool diameter increases the process becomes more similar to traditional
stamping (Jeswietet al., 2005). Practically, the decrease of the tool diameter increases the
forming limits (Fratiniet al., 2004). Hirtet al. (2002) observes that by decreasing the tool
diameter from 30 mm to 6 mm a higher strain and deformation canbe achieved.

It becomes intuitive to use the location of the forming tool as an indicator. The tool
triggers the location of plastic deformation but it does notdefine the size of the plastically
deforming part in a FE mesh. The size of the plastic region canbe defined by finding the
super elements that are located in the vicinity of the forming tool. In order to implement
that, a number of virtual cross points are introduced in the FE mesh. A cross point can
be a common node between 4 adjacent super elements, considering the super elements
partitioning in Figure 3.1. Each super element is attached to at least one cross point. The
projected distance of the cross points to the tool surface are calculated prior to the load
increment. The closest cross point, for instance, to the tool surface can be used to notify
that the attached 4 super elements define the plastic region.These super elements have to
be updated iteratively in order to capture the introduced plastic deformation. Actually, the
cross points are attached to nodes in the FE mesh and as a result the coordinates of the cross
points are updated for each load increment and consequentlythe projected distance to the
tool surface. The movement of the tool changes the active cross point(s) and that defines a
new set of super elements to be iteratively updated or may be the same set for a number of
load increments. In the same way, the rest of the super elements can be classified to use the
incremental update or the multi-incremental update strategy.

To investigate the performance of the tool indicator, the test with plastic loading of
a blank followed by elastic unloading (penetration test), introduced in 2.2.1, is used. The
predicted tool force is used as a parameter to check the accuracy. In this test, four simulations
are performed each with a different setting for the tool indicator. These settings define only
the closest cross point and cross points within 0.5,1.0,1.5 times the tool radius away from
the tool surface. The active cross point(s) classify the attached super elements for iterative
treatment. The rest of super elements within the FE mesh are classified for incremental
update treatment. The predicted force–displacement curves are shown in Figure 3.6. In
general, all tool indicator settings successfully predictthe pattern of the force–displacement
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Figure 3.6: The predicted force displacement curve in penetration test test by standard method
and iterative–incremental treatment with different tool settings for the tool indicator
(left), error evolution during the simulation (right).

Table 3.1: The iterative and the incremental ratios for different tool indicator settings.

Newton Closest 0.5 R 1.0 R 1.5 R

αIter % 100 4 12 16 24

αIncr % 0 96 88 84 76

curve. A larger size of searching radius gives a better prediction of the tool force because it
includes more of the plastic region. The result for a searching radius of 1.5 times the tool
radius (1.5R) is the best among the tested settings of the tool indicator with maximum error
of 4.4 N.

This good result by the 1.5R simulation is achieved because almost the correct size
of the plastically deforming part of the FE mesh is updated iteratively. An example of the
assumed plastic region and consequently the iteratively treated super elements for 2 different
settings of the tool indicator is shown in Figure 3.7. It is observed that the iterative region
size and location have been fixed for each tool indicator setting because only a vertical
movement has been introduced in this test. The iterative ratio αIter defines the ratio of
iteratively treated super elements to the total number of super element within a FE mesh.
Similarly, the incremental ratioαIncr and the multi-incremental ratioαMIncr defines the ratio
of incrementally and multi-incrementally treated super elements to the total super elements
in a FE mesh respectively. The ratio of each treatment for different tool indicator settings is
listed in Table 3.1. Noting that in these simulations the multi-incremental update treatment
is not used just to demonstrate a simple classification of thesuper elements. The computing
time of all simulations is summarized in Table 3.2. As expected, the use of one cross point
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Figure 3.7: The assumed plastic region size and location for2 different tool indicator settings
that are a search radius of 0.5 (left) and 1.5 times the tool radius (right) and the
corresponding superelement classification into iterativeupdate (gray) and incremental
treatment (white).

Table 3.2: The overall computing time and the correspondingspeeding factor for the simulations
with different tool indicator settings.

Newton Closest 0.5 R 1.0 R 1.5 R

CPU time (s) 178.0 85.9 98.8 101.7 109.3

Speeding factor 1.00 2.07 1.80 1.75 1.62

to classify the iterative super elements requires the smallest CPU time of 85.9 s and it
accelerates the standard Newton simulation by 2.07 times.

3.2.2 Plastic indicator

The major drawback of the tool indicator is that the searching radius has to be increased in
order to define the correct plastic region. This increase of the searching radius may include
super elements that do not need to be treated iteratively. Beside, a definition of the proper
value of the searching radius requires some experience. Forthis reason, an indicator that
depends on the evolution of displacement field orotherderivedquantities is more robust. The
material nonlinearity is evaluated for each iteration or increment(s) depending on the update
strategy even though the incremental and the multi-incremental treated super elements are
assumed to model elastic deformation. This means that the plasticity of the previous load
increment is known prior to the iterative procedure to solvethe system of equations for both
the iteratively and the incrementally treated super elements and for the multi-incrementally
super elements if they are updated at the previous load increment. This knowledge is used
to develop the plastic indicator.

The plastic indicator is based on checking an introduced plastic increment in the previous
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Figure 3.8: The predicted force displacement curve in penetration test by standard method and
iterative–incremental treatment with plastic indicator using different super element
size (left), error evolution during the simulation (right).

load increment for the iteratively updated and incrementally updated super elements. It
checks each integration point of each element within the super element. Based on this
check, if at least one integration point within an element indicates a plastic deformation,
in the previous load increment, the entire super element is classified for iterative update
treatment. Otherwise, the super element is classified for the incremental update treatment.
The plastic indicator can generically classify the super elements of a FE mesh into the
iterative and incremental update treatment. One integration point can shift a super element
from incremental treatment to iterative treatment and viceversa. The influence of the
super element size (number of element per super element) becomes more pronounced in
the iterative ratio and the increment ratio and consequently on the speeding of the standard
implicit simulation.

The performance of the plastic indicator is checked using the penetration test. Three
different sizes of the super elements are checked. The different sizes are 4,64 and 256
elements per super element and they are referred to as S4,S64 and S256. It corresponds to
group the FE mesh into 1600,100 and 25 super elements, respectively. The predicted tool
force is shown in Figure 3.8. The largest super element size setting S256 predicts the best
fit to the achieved force prediction by the standard Newton implicit simulation. All plastic
indicator settings performed very good during the loading stage (till increment number 20)
almost zero error except S4 at the first four increments. S4 describes the previous plastic
deformation well, but it does not extend to the neighboring super elements that are going
to experience plastic deformation in the coming load increment. A larger super element
includes more elements that may be treated inefficiently by the iterative update but it is
ready to capture the introduction of plastic deformation inthe next load increments.

By using the plastic indicator, the super elements are classified into either the iterative
or the incremental update treatment. The evolution of the iterative ratio for different super
element sizes is shown in Figure 3.9. Regardless of the superelement size, the iterative



34 Adaptive domain classification

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Number of increments

Ite
ra

tiv
e 

ra
tio

 

 

S4
S64
S256

Figure 3.9: Iterative ratio evolution for differrent superelement size.

ratio starts at one because the first load increment is used toinitialize the FE model and
therefore all super elements are set into the iterative treatment. After that, the plastic
indicator becomes active and the iterative ratio drops to a low value because the process is
still in its initial stage. Then the iterative ratio increases with further plastic deformation
that extends over a larger area. During the unloading stage (increment 21 to increment
25), the iterative ratio is expected to reduce to zero, but itis not, and that indicates that
a small material nonlinearity occurs during the unloading stage. The difference between
the iterative ratios is a result of different super element sizes, a larger super element size
predicts a larger iterative ratio. Excluding the first increment, the maximum iterative ratio
is 30.7%,35.0% and 44.0% for S4,S64 and S256, respectively. No super elements are
classified into the multi-incremental update treatment therefore the multi-incremental ratio
is zero for all simulations. The incremental ratio becomesαIncr = 1 − αIter since the sum
of the ratio has to be one.

The plastic indicator successfully defines the location of the plastic deformation zone
but the size is influenced by the size of the super element. Thelargest size of the plastic
deformation is defined by the S256simulation and the smallest by the S4 simulation, asample
of the plastic deformation region at the end of the loading stage is shown in Figure 3.10.
The CPU time of the simulations is summarized in Table 3.3. The smaller size of the
super element, iterative ratio, is better in accelerating the standard Newton simulation that
is speeded up 1.65 times by S4.

3.2.3 Geometrical indicator

In the previous sections, the super elements are classified into iterative and incremental
update treatment only and the multi-incremental treatmentis not included in the performed
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Table 3.3: The overall computing time and the correspondingspeeding factor using the plastic
indicator.

Newton S4 S64 S256

CPU time (s) 178.0 107.7 110.1 116.1

Speeding factor 1.00 1.65 1.62 1.53

Figure 3.10: Predicted plastic region by differrent super element size: S4 (left) and S256 (right).

simulations. The tool indicator can be extended to classifythe super elements into three
different update frequency regions by introducing two searching radii. One of these radii
can classify the super elements at a given distance from the tool surface into the iterative
treatment while a larger searching radius classifies the neighbors (to some extent) into the
incremental update treatment. The rest of super elements are set into the multi-incremental
update treatment. By this setting, the movement of the tool results in a change of the
super elements classifications. A formerly multi-incremental super element is updated if
it is located in the range of the incremental searching radius and it will be updated each
increment afterward, otherwise it is not updated and that may be for the entire simulation.
Anotheroption for updating a multi-incremental super element is to perform the update after
a number of increments. This option is more dependent on the expertise of the analyst, but
it does not consider the influence of shape change. For this reason, a geometrically based
indicator is developed to control the frequency of updatinga multi-incremental treated super
element.

Super elements based simulation controls the frequency of updating super elements.
Meanwhile the system of equations, including all degrees offreedom, are solved in each
iteration and that updates the incremental displacement vector d. Consequently, the coor-
dinates in the model are updated and that results in a shape change in the entire FE mesh.
Within the structure of a multi-incremental treated super element, a check is performed
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Figure 3.11: The predicted force displacement curve in penetration test by standard method and
super element method based on iterative and multi-incremental treatments with and
without geometrical indicator (left), error evolution during the simulation (right).

that calculates the normal vector of each element within thesuper element. This check is
performed incrementally after the convergence of the iterative procedure. The newly cal-
culated element normal vector is compared to the calculatednormal vector at the moment
of updating the geometrical and the material nonlinearities before several increments. The
normal vector change in orientation by an angleθ can be used to indicate a shape change.
Based on that, the change of only one element can trigger thatthe entire super element
requires an update. The update is performed for that particular multi-incremental super
element prior to the new load increment and a new update classification can be assigned to
the super element.

The penetration test is used to check the performance of the geometrical indicator. Two
tests are performed and compared to the standard Newton simulation. The first simulation
has either iterative or multi-incremental treated super elements (Iter–MIncr), no incremental
region. Based on the tool, a search radius is used to classifya group of super elements into
the iterative treatment. The classification of the super elements is fixed and the multi-
incremental super elements are not updated for the entire simulation. The second test has
the same setting as the first test and the geometrical indicator is activated (Geom). A change
in an element normal vector orientation by half a degree is used as threshold to turn a multi-
incremental treated super element into an incremental treated super element. The predicted
force is shown in Figure 3.11. The introduction of the geometrical indicator reduces the
error in the force prediction to less than 9 N. The indicator helps in enhancing the prediction
of the force compared to the simulation without the use of thegeometrical indicator.

The evolution of the super element classification ratios (iterative, incremental and multi-
incremental) is shown in Figure 3.12. In both simulations, all super elements are classified
as iterative treatment for the first load increment and for the rest of the simulation the
indicator always results in an iterative ratio of 24%. Afterincrement 7, the geometrical
indicator successfuly starts changing some of multi-incremental super elements into the
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Figure 3.12: The evolution of the super element classifications into iterative (top left), incremental
(top right) and multi-incremental (bottom).

Table 3.4: The overall computing time and the correspondingspeeding factor using the plastic
indicator.

Newton Geom Iter–MIncr

CPU time (s) 178.0 89.1 84.6

Speeding factor 1.00 2.00 2.10

incremental treatment, therefore the incremental ratio isincreased from zero to 30% and
the multi-incremental ratio is reduced by the same value from 76% to 46%. The simulation
using the geometrical indicator requires slightly more CPUtime than the simulation without
the indicator but it is still twice as fast as the standard Newton simulation, the performance
of the simulations is listed in Table 3.4.
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3.3 Case studies

Up to this point, the efficient implicit method based on superelements is introduced and
tested using a simple test of localised deformation. Also, several indicators are introduced
to classify the super elements into an iterative, incremental and multi-incremental updated
strategy. Now, two real-life applications are used to demonstrate the capability of the
efficient implicit method with the use of the indicators to speed up the standard Newton
implicit simulation of these applications. The first case study is performing one loop of
single point incremental forming SPIF and the second case isto perform continuous bending
under tension of a strip by three rolls.

3.3.1 One loop of SPIF

In this case study, one loop of a single point incremental forming SPIF process is simulated.
The numerical model that is introduced in Section 2.2.1 is used here. The simulation starts
by moving the tool that is initially in contact 0.5 mm downwards in the vertical direction
(z coordinate) to introduce a penetration in the blank. At thisvertical position, the forming
tool starts moving in–plane following a tool path that drawsa rectangle in the blank and
ends at the starting position of in–plane movement. The initial tool position and the tool
path are shown in Figure 3.13.

Two simulations are performed based on the efficient implicit approach. In both simu-
lations, the FE mesh is grouped into 1600 super elements using super elements that include
4 triangular shell elements. The first simulation uses only iterative and incremental updated
super elements (Iter–Incr). The tool indicator is used to classify the super elements within a
distance of one radius of the tool from the tool surface into iterative treatment. The plastic
indicator is also used. The second simulation uses all typesof treatment (All type). A search
radius classifies the super elements within a distance of four times the tool radius from the
tool surface into the incremental treatment then the searchradius of the iterative treatment,
that is as large as one radius of the tool, is applied. The plastic indicator is active and a
geometrical indicator with half a degree threshold is used to shift multi-incremental super
element into incremental super element.

The achievedxz profile at y = 0 is used to compare the performance of the efficient
implicit simulations to the standard Newton simulation after one loop of the SPIF process,
the profiles are shown in Figure 3.14. Both simulations predict a very good result, the error
in predicting the profile is limited to less than 0.4µm by the Iter–Incr simulation while it is
less than 2µm by the second simulation. A slight deviation between the Iter–Incr and the
second simulation is observed because part of the FE model ismulti-incrementally treated.

In both simulations, the indicators successfully classifythe super elements into the
available update treatments,Figure 3.15. As the tool approaches the cornerof the rectangular
shape, more plastic deformation is introduced; consequently an increase of the iterative ratio
is observed because the corners are stiffer (double clampededges) than the middle position
between two corners. The movement of the tool away from the corner results in relaxing
(local springback) of a plastically deformed part and that results in a drop of the iterative
ratio. This is observered for corners 2,3 and 4. Approaching corner 1 at the end of the tool
path shows a reduction in the iterative ratio because the region has been deformed plastically
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Figure 3.13: One loop tool path for SPIF simulation. The toolpath length is 260.5 mm that
consists of 0.5 mm vertical movement followed by 260 mm in–plane movement.
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Figure 3.14: The numericalxzprofile aty = 0 at the end of one loop SPIF process (left) and the
error by the efficient implicit for two different settings.

before. The incremental ratio shows the opposite behaviourin the Iter–Incr simulation since
the sum of both ratio has to be one. In the second simulation, the incremental ratio starts
at low level because the rest of the super elements are classified to the multi-incremental
treatment. After that, it shows a significant increase hencemore of the multi-incremental
super elements are turned into the incremental treatment and this lasts until increment 614
when all of the multi-incremental super elements are gradually turned into the incremental
treatment. Now, the super elements are either iteratively or incrementally treated. The
number of multi-incremental super elements always decreases because no criterion is used
in this simulation to classify an iterative or an incrementally treated super element into
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Figure 3.15: Super element classifications evolution during the simulations into iterative (top left),
incremental (top right) and multi-incremental treatment (bottom) .

multi-incremental treatment.
The CPU time required by the simulations is listed in Table 3.5. The standard Newton

simulation requires 5693.2 s (1.58 hr) to finish 965 load increments. The Iter–Incr simulation
performs the same number of load increments in 3393.2 s (0.94 hr) that is 1.68 times faster
than the standard Newton simulation and less than 0.4µm error is observed in the predicted
xzprofile. The simulation with all indicators active is slightly faster, it is 1.72 times faster
than the standard simulation but with 2µm error.

3.3.2 Continuous bending under tension

In this test, a strip is deformed by continuous bending undertension. The deformation is
introduced by the use of a roll set made of three identical rolls of 15 mm diameter. The rolls
are separated from each other by 17.5 mm, in longitudinal direction. The strip dimensions
are 200×20×1 mm3. A 2 D model of the strip and the roll set is shown in Figure 3.16. The
process is started by clamping both ends of the strip. Then the strip is bent by the movement
of the central (upper) roll 3.3 mm downward. Meanwhile, the two lower rolls are fixed in
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Table 3.5: The overall computing time and the correspondingspeeding factor for one loop of
SPIF simulation.

Newton Iter–Incr All type

CPU time (s) 5693.7 3393.2 3306.5

Speeding factor 1.00 1.68 1.72

Figure 3.16: 2 D presentation of the strip and the roll set, continuous bending under tension precess
description.

position, this is the first stage of the process. The process proceeds by moving the roll set
to the opposite end of the strip (second stage). This processcan be classified as multi–point
incremental forming.

Half of the strip, taking advantage of symmetry around the longitudinal axis, is modeled
by 4000 triangular shell elements. The material model is representative for mild steel.
The anisotropic yield behaviour of the material is modelledby the Hill’48 criterion. The
isotropic nonlinear hardening is governed by the power law as

σ = 494(ε + 0.00001)0.248 (3.5)

whereσ andε are the flow stress and the equivalent plastic strain respectively. The material
has a Young’s modulus of 200 GPa and Poisson’s ratio of 0.3.

An efficient implicit simulation based on super element is performed and achieved
results are compared to the results of the standard Newton simulation. For efficient implicit
simulation, the FE mesh is grouped into 1000 super elements and they are classified into
iterative or incremental update treatment only (Iter–Incr). The predicted vertical force at
the central roll, for instance, is plotted in Figure 3.17. The strip experiences bending by the
vertical movement of the upper roll combined with tension because of the clamped ends.
For that, the force on the roll is increased monotonically till the end of this stage. A global
plastic deformation is observed in the entire strip. Parts of the strip that are in the vicinity of
the rolls harden more than the rest of the strip that experiences mainly tension. By the roll
set horizontal movement, a new part of the strip is plastically deforming and that reduces
the tension in the strip and consequently the predicted vertical force at the upper roll. An
increase of the predicted force is observed because the material that is hardened at the lower
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Figure 3.17: Predicted vertical force at the central roll (left) and error by the Iter–Incr based
simulation (right).

right roll during the first stage passes the upper (central) roll where it experiences a harder
material. The result achieved with Iter–Incr update strategy has a very good agreement with
the standard Newton result with less than 1.5% error

The Iter–Incr simulation has zero error at the first stage of the simulation since all super
elements are treated iteratively. This iterative treatment is necessary because of the global
plastic deformation. During the second stage, the tool indicator is used with a search radius
that classifies super elements within 5 mm of any roll surfaceinto iterative treatment. The
evolution of the iterative and the incremental ratio are shown in Figure 3.18. This results in
almost constant value for the iterative and incremental ratio of 0.224 and 0.776, respectively.
Of course, the positions of the iterative treated super elements are updated to be in the vicinity
of the rolls.

Based on this setting, the Iter–Incr implicit simulation isfaster by 1.81 times than the
standard Newton implicit simulation. The Iter–Incr simulation requires 9075.2 s (2.52 hr)
to perform 1466 load increments, while the standard Newtom simulation requires 16385.2s
(4.55 hr) for the same number of increments.

3.4 Summary and conclusions

In Section 3.1, a super element based efficient implicit timeintegration procedure is intro-
duced. A FE mesh is substructured into super elements. This re–cast the assembly procedure
to be over all super elements instead of elements. It facilitates partitioning a FE mesh into
different update frequencies: each iteration, increment and multi-increments. Also, it man-
ages and organizes the update of the tangent stiffness matrix and the internal force vector
based on the super element classified treatment. A simple test is used to investigate the in-
fluence of linearization of geometrical nonlinearity within the incremental treatment. Under
the condition of small incremental deformation, the incrementally linearized approach can
be considered valid.
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Figure 3.18: Super element evolution during the Iter–Incr simulation.

In Section 3.2, super elements are generically classified into different update frequency
strategies (iterative, incremental or multi-incremental). This is performed by introducing
indicators that can define the super elements classificationprior to load increment. These
indicators are developed for localized plastic deformation. The indicators are the current
tool location, plastic deformation in the previous load increment and the shape change in the
previous load increment. The tool indicator uses the strategy of a search radius to classify the
super elements based on the distance between the super element and the tool surface. The
plastic deformation in the previous load increment is used in the plastic indicator in order to
turn incrementally treated super elements into iterative treatment. The geometrical indicator
that is based on shape change classifies multi-incremental super elements into incremental
treatment. In general, all indicators perform very good andpredict the necessary change in
the super element treatments.

The super element based efficient implicit approach and the developed indicators are
tested by simulating two practical applications in order todemonstrate the capability of
speeding up the standard Newton implicit simulation, in section Section 3.3. It speeds up
one loop of SPIF simulation by 1.68 times with error limited to 0.4µm in the predictedxz
profile. A speeding factor of 1.81 is obtained in the simulation of the deformation of a strip
by continuous bending under tension. During the entire simulation, the error of predicting
the upper roll vertical force does not exceed 1.5%.

In this chapter, many simulations are performed by the superelement based efficient
implicit approach and a speeding factor in the range of 1.5− 2.1 is achieved. However, two
simulations have to be performed, a standard and a super element based, in order to know
the speeding factor. This brings to attention the need for a model that predicts in advance
the expected speeding factor and to define the limits of such aspeeding factor. This will be
the topic of the next chapter.





4. Analysis of the speeding factor

Up to this point, the super element efficient implicit procedure successfully accelerates the
implicit simulation of localised deformation. The achieved speeding up of the implicit
simulation is simply explained by reducing the cost of the increment. This is applied by
efficient update strategies that distinguish between plastic and elastic deformation. A better
understanding of the computational performance of the super element implicit procedure is
motivated by several issues in Section 4.1. For instance, a change in the used number of
iterations or the combination of the update frequencies canhave an impact on the achieved
speeding of the standard implicit simulation. Clearly, there is need for an analytical formula
to explain an achieved speeding factor and even to predict inadvance the speeding factor for
an implicit simulation. Also, the analytical formula can provide a guideline for optimum
performance. An analytical formula for the two domain approach is presented in Section 4.2,
it focuses on the performance of the speeding factor for a FE model assembled of iterative
and incremental updated super elements. This analytical formula is extended in Section 4.3
to include the influence of introducing a third domain that has low update frequency (multi-
incremental). The achieved speeding factor in one loop efficient implicit simulation of SPIF
process is explained as demonstration in Section 4.4.

4.1 Motivation

The speeding factor is defined as the ratio of CPU time used by the standand Newton implicit
simulation to the efficient implicit simulation time. It is used to measure the advantage of
the efficient implicit approach in accelerating the standard implicit simulation. It has to
be larger than one to be successful. The basic idea of the efficient implicit procedure is to
reduce the cost of each iteration during the iterative procedure, as explained in Section 2.3.
The reduction in iteration cost is a result of reducing the cost of building the system of
equations (BUILD) and updating the stresses based on the actual displacement (UPDATE).
BUILD and UPDATE are two major costs of the iteration out of three. The third major cost is
solving the system of equations (SOLVE) and this part of the iteration cost is not influenced
by the efficient implicit procedure. An example of these costs is shown in Figure 2.14.

The reduction in the cost of BUILD and UPDATE is strongly influenced by the update
frequencyratios (iterative, incremental and multi-incremental) that are used in a FE analysis.
The iterative treatment of all super elements in a FE model results in a speeding factor of
one, the implicit simulation in this case is not accelerated. For a number of iterations within
one increment, the incremental update treatment performs BUILD and UPDATE only once
per increment (in the first iteration). The redundant cost ofBUILD and UPDATE for the
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rest of the iterations is saved. This results in a speeding factor higher than one. Intuitively,
the multi-incremental treatment of the entire FE model has alarger impact on the speeding
factor than the incremental treatment. It has the same update strategy as the incremental
method but extended for a number of increments where the incremental treatment forces the
update every increment. In the efficient implicit simulation, the FE models may consist of
the three types of updating strategy. The presence of the iterative update strategy is essential
to model the plastic localised deformation

A different material model or element type may increase or decrease the required CPU
time by BUILD and UPDATE and a new speeding factor will be achieved. To conclude,
the speeding factor of an implicit simulation depends on several factors that are the update
strategies ratio in a FE model, the frequency of performing the update, the number of
iterations that are performed for a number of increments andthe major cost ratios of the
Newton iteration. The dependency of the speeding factor on these factors motivates the
development of an analytical formula that estimates in advance the speeding factor for a FE
model implicit simulation.

4.2 Two domain analytical formula

In this section, an analytical formula is introduced to predict the speeding factor that the
two domain efficient implicit method can achieve compared tothe standard Newton im-
plicit simulation of a FE model. The basic idea of two domain method is introduced in
Section 2.3.2 and the super element based implementation isexplained in Section 3.1, The
two domain method splits a FE model into an iterative domain (super elements) and an
incremental domain. An iterative updated domain is recommended for plastic deformation
while an incremental domain is suitable for elastic deformation. The cost of one Newton
iteration (T) can be split into three major parts that are: building the system of equations (B),
solving the system of equations (S) and updating the stresses based on actual displacement
(U)1

T = B + S+ U (4.1)

The cost ratio of the major parts is defined as the ratio of eachpartial cost (CPU time) to
the total time of the iteration

B + S+ U

T
= BT + ST + UT = 1 (4.2)

whereBT, ST andUT are the cost ratio of BUILD, SOLVE and UPDATE respectively.
The cost of building the system of equations consists of the cost of creating the tangent

stiffness matrix and the internal force vector. It can be defined as

B = αPBP + αEBE (4.3)

whereBP and BE are the cost of building the entire system of equations as if it deforms
plastically or elastically, respectively.αP andαE define the ratio of plastic and elastic
elements to the total number of elements in a FE mesh. For simplification, an assumption

1The first letter of the abbreviated terminology will be used in the equations for convenience
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is made that an element is either plastically or elasticallydeforming2. The cost of building
a system of equations for a plastically deforming model is larger than for an elastically
deforming model. The tangent stiffness matrix for elastically loading or unloading elements
is based on the elasticity tensor while for plastically deforming elements it is based on the
tensor of tangent elastoplastic moduli (Simo and Hughes, 2000). It consists of the elasticity
tensor and an additional term that depends on the used material model. The elastic/plastic
BUILD ratio β is defined as the ratio of the CPU cost of building an elastic system of
equations to the cost of building a plastic system of equations

β =
BE

BP (4.4)

by substituting (4.4) into (4.3) andαP + αE = 1, B can be presented as a function ofBP or
BE

B =
(

αP + (1 − αP)β
)

BP =
(αEβ + 1 − αE

β

)

BE (4.5)

Similarly, the cost of updating the stresses based on actualdisplacement can be defined

U = αPUP + αEUE (4.6)

The actual stresses are updated by an iterative procedure that is known as return mapping
algorithm. It finds the balance between the elastic and the plastic strains. At the beginningof
the procedure, a trial elastic stress estimation is made to decide if the stresses are developed
elastically or plastically based on a defined yield condition (Simo and Hughes, 2000). If the
yield condition is not violated the procedure finishes and the stress is updated elastically.
Otherwise, an iterative procedurestarts to find the balancebetween the elastic and the plastic
strains and the corresponding stresses. The procedure is performed for each integration
point. The cost of the iterative procedure is strongly dependent on the complexity of the
material model. More time is required to perform a fully plastic update of the stressesUP

compared to a fully elastic update of the stressesUE. The elastic/plastic UPDATE ratioη
is defined as the ratio of the cost for updating the stresses inthe elastic case to updating the
stresses for the plastic case

η =
UE

UP (4.7)

then,U can be defined as

U =
(

αP + (1 − αP)η
)

UP =
(αEη + 1 − αE

η

)

UE (4.8)

Now, the cost of one increment of the two domain method can be split into three parts.
These parts are: the cost of the iterative domain, the cost ofthe incremental domain and
the cost of solving the system of equations. The cost of the iterative domain (CITER) is
the cost of building the system of equations and updating thestresses of the iterative super
elements. It is required for every iteration

CITER = αIter(B
P + UP)N (4.9)

2In general, an element can have both elastic and plastic integration points
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whereN is the number of iterations andαIter is the iterative ratio that is defined in Sec-
tion 3.2.1. The iterative ratio should approximately equalthe ratio of plastic elements to the
total elements in the FE modelαP = αIter. With the use of (4.5) and (4.8), CITER becomes

CITER = αIter

( B

αIter + (1 − αIter)β
+

U

αIter + (1 − αIter)η

)

N (4.10)

The cost of the incremental domain (CINCR) is the cost of building the system of equations
and the update of the stresses (nonlinearly) only once at thebeginning of the increment.
Within the increment, the internal force vector is updated linearly by the multiplication of
the super element tangent stiffness matrix and the super element incremental displacement
which requires negligible cost compared to an update based on the actual stresses. Assuming
that the incremental ratio (Section 3.2.1) is equal to the ratio of elastic elements to the total
elements in the FE modelαE = αIncr, CINCR equals

CINCR = αIncr(B
E + UE)

= αIncr

( βB

βαIncr − αIncr + 1
+

ηU

ηαIncr − αIncr + 1

)

(4.11)

The cost of solving the system of equations in the two domain method is similar to the cost
in the standard Newton method because the size of the system of equations is not changed.

Now, the speeding factor (SPEED) is defined as the ratio of oneNewton increment cost
to the cost of one increment of the two domain method

SPEED=
NT

N S+ CITER+ CINCR
(4.12)

dividing over T presents a generalized model of SPEED that depends on the major parts
cost ratio instead of the major parts absolute cost

SPEED=
N

N ST + CITERT + CINCRT
(4.13)

where

CITERT =
CITER

T
= αIter

( BT

αIter + (1 − αIter)β
+

UT

αIter + (1 − αIter)η

)

N (4.14)

CINCRT =
CINCR

T
= αIncr

( βBT

βαIncr − αIncr + 1
+

ηUT

ηαIncr − αIncr + 1

)

(4.15)

Special cases

Several special cases are introduced here to check the performanceof the analytical formula.
The first special case is to check the expected SPEED ifone iteration is performed per incre-
ment. Logically, the two domain method does not accelerate the standard Newton implicit
simulation for one iteration per increment because the two domain method advantage is to
save the cost of BUILD and UPDATE of the elastic part after thefirst iteration. Substitute
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N = 1 in (4.13) and eitherαIter = 1 − αIncr in (4.14) orαIncr = 1 − αIter in (4.15) and
manipulate terms

SPEED =
1

ST + UT

(αIter + (1 − αIter)η

αIter + (1 − αIter)η

)

+ BT

(αIter + (1 − αIter)β

αIter + (1 − αIter)β

)

=
1

ST + BT + UT
︸ ︷︷ ︸

1

= 1 (4.16)

The second case isperforming iterative update for all super elements. This is similar to the
standard Newton method, hence SPEED has to be one. SubstituteαIncr = 0 ⇒ CINCR = 0
andαIter = 1 in (4.13)

SPEED=
N

N ST + N(BT + UT)
=

N

N(ST + BT + UT)
= 1 (4.17)

The third case isdominating solver cost. This means thatST ≈ 1 ⇒ BT ≈ UT ≈ 0, thus

SPEED=
N

N ST
=

1

ST
≈ 1 (4.18)

The fourth case iscomplex material model, resulting in a negligible elastic/plastic BUILD
ratioβ and elastic/plastic UPDATE ratioη. β ≈ η ≈ 0 ⇒ CINCR ≈ 0 and consequently
SPEED equals one. The fifth case isnegligible solver cost. St ≈ 0 ⇒ BT + UT ≈ 1,
SPEED becomes

SPEED=
N

CITERT + CINCRT
(4.19)

if αIter = 1 ⇒ CINCRT = 0 and CITERT = N, SPEED becomes equal to one. If
αIncr = 1 ⇒ CITERT = 0, SPEED equals

SPEED=
N

BT + UT
︸ ︷︷ ︸

1

= N (4.20)

This means that the two domain method can accelerate the standard Newton simulation by
a factor equal to the number of iterations used per increment.

Typical case

For moderately localised forming implicit simulation, allthe factors of SPEED are involved.
SPEED is expected to be in the range of one to the number of iterations per incrementN.
This hints that a large number of iterations is preferred to have better SPEED. For this
reason, the limit of SPEED (4.13) atN → ∞ is calculated (l’Hôpital’s rule is applied)

lim
N→∞

SPEED = lim
N→∞

N

N ST + CITERT + CINCRT

=
1

ST + αIter

( BT

αIter + (1 − αIter)β
+

UT

αIter + (1 − αIter)η

) (4.21)
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Table 4.1: The settings for different case studies in the evaluation of SPEED.

αIter β N ST

Case 1 variable 1.0 5 variable Figure 4.1

Case 2 0.1 variable 5 variable Figure 4.2

Case 3 0.1 1.0 variable variable Figure 4.3

Case 4 0.1 1.0 ∞ 0.1 Figure 4.4

Case 5 variable 1.0 ∞ variable Figure 4.5

Case 6 0.1 variable ∞ variable Figure 4.6

The upper limit of SPEED is a function of the major parts ratio, iterative ratio, elastic/plastic
BUILD ratio β and elastic/plastic UPDATE ratioη. It is independent of CINCRT. A
simplified analytical formula of SPEED can be introduced from (4.13) by assuming that
β = η as

SPEED=
N

(

αIter + (1 − αIter)β
)

(1 − αIter)β + NαIter + βST
(

N(1 − αIter)+ αIter − 1
) (4.22)

and consequently a simplified upper limit of SPEED becomes

lim
N→∞

SPEED=
αIter + (1 − αIter)β

αIter + (1 − αIter)βST
(4.23)

The simplified SPEED model is used for further investigations studying the influence
of the iterative ratioαIter, the elastic/plastic BUILD ratioβ and the number of iterations
N on the two domain SPEED for the entire range of the partial cost of SOLVE ST. The
settings of the studied cases are summarized in Table 4.1. The SPEED curves for different
iterative ratioαIter values are shown in Figure 4.1. An upper limit and a lower limit is
achieved byαIter = 0 andαIter = 1.0, respectively. The lower limit is not influenced byST
because the entire system is updated each iteration withαIter = 1.0. ForαIter < 1.0, SPEED
performs better at lowST that corresponds to high value ofBT andUT. The performance of
SPEED is enhanced by reducingαIter. The best achieved SPEED is atαIter = 0 that is fully
incremental treatment of the entire FE model. The influence of αIter on SPEED is reduced
at higherST e.g. atST = 0.1 the increase ofαIter from 0.1 to 0.5 reduces SPEED by 45 %
while atST = 0.5 it reduces SPEED only by 20 %.

The influence of the elastic/plastic BUILD ratioβ on SPEED curves is plotted in Fig-
ure 4.2. A lower limit is observed atβ = 0 because SPEED becomes dominant by the
iterative cost while an upper limit is observed atβ = 1.0 because the elastic cost of BUILD
and UPDATE is treated as expensive as the plastic cost (very simple material model). The
same trend of SPEED is observed as in Figure 4.1. The increaseof β enhances the achieved
SPEED. The influence ofβ on SPEED is larger at lowST than at highST.
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Figure 4.1: SPEED curves for different iterative ratio values,N = 5 andβ = 1.0.
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Figure 4.2: SPEED curves for different values of the elastic/plastic BUILD ratioβ, N = 5 and
αIter = 0.1.

The achieved SPEED curves fordifferent numberof iterationsNare plotted in Figure 4.3.
The lower limit of SPEED is drawn byN = 1. IncreasingST reduces SPEED. The influence
of N on SPEED is higher at lowST. The observed trend of SPEED is similar to the observed
trend in Figure 4.1. An increase ofN results in additional increase of SPEED which is more



52 Analysis of the speeding factor

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

S
T

S
P

E
E

D

 

 

N = 10
N = 8
N = 5
N = 2
N = 1

Figure 4.3: SPEED curves evolution with the used number of iterations,β = 1.0 andαIter = 0.1.

significant at a lower value ofN compared to the increase of SPEED at a higher value ofN.
To emphasize this issue, SPEED is plotted versusN in Figure 4.4. SPEED increases with
a steep slope that drastically decreases with increasingN. The upper limit of SPEED, the
horizontal dashed line, is found by substitutingST = 0.1,αIter = 0.1 andβ = 1.0 in (4.23)
yielding a value of 5.26.

The simplified upper limit, defined in (4.23), depends onαIter, β andST. In Figure 4.5,
the upper limit curves are grouped betweenαIter = 1 (lower) andαIter = 0 (upper). The
upper limit ofαIter = 0 goes to infinity atST = 0 as result of dividing by zero in (4.23).
Again, the upper limit of SPEED decreases by increasingST. At the sameST, the upper
limit is shifted up by decreasingαIter. IncreasingαIter has more significant influence in
shifting the upper limit down at lowST than at highST

The influence of elastic/plastic BUILD ratioβ on the simplified SPEED upper limit is
plotted in Figure 4.6. The curves are grouped betweenβ = 0 (lower limit) andβ = 1 (upper
limit). A decrease of the curves is observed with increasingST. β has larger influence on
the curves at lower value ofST compared to high value ofST, which is typical behavior.

4.3 Three domain analytical formula

The three domain efficient implicit method has an advantage over the two domain efficient
implicit method. This advantage is adding an additional update frequency strategy, the
multi-incremental strategy, to the iterative and the incremental update strategy. The multi-
incremental strategy has a similar update procedure as the incremental update strategy
except it is extended over a number of increments (Section 2.3.3). The cost of the three
domain method for the number of iterations that covers a number of increments can be split
into four parts. These parts are the cost of solving the entire system of equations for all
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Figure 4.4: SPEED curve evolution with the used number of iterations,β = 1.0, ST = 0.1 and
αIter = 0.1, the upper limit is found atN → ∞.
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Figure 4.5: Simplified SPEED upper limit curves evolution for different iterative ratio atβ = 1.0
andN → ∞.

iterations, BUILD and UPDATE of the iterative domain (superelements) for all iterations,
BUILD and UPDATE of the incremental domain that is performedevery increment and the
BUILD and UPDATE of the multi-incremental domain that is performed once for a number



54 Analysis of the speeding factor

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

S
T

S
P

E
E

D

 

 

β = 1
β = 0.8
β = 0.5
β = 0.2
β = 0

Figure 4.6: Simplified SPEED upper limit curves evolution for different elastic/plastic BUILD
ratioβ atαIter = 0.1 andN → ∞.

of increments.
The speed factor (SPEED) is defined as the ratio of the cost forthe standard Newton

method to the cost of the three domain method for the same number of iterations

SPEED=
N

N ST + CITERT + CINCRT + CMINCRT
(4.24)

where

CITERT =
( BT

αP + (1 − αP)β
+

UT

αP + (1 − αP)η

)

NαIter (4.25)

CINCRT =
( βBT

βαE − αE + 1
+

ηUT

ηαE − αE + 1

) N αIncr

NIncr
(4.26)

CMINCRT =
( βBT

βαE − αE + 1
+

ηUT

ηαE − αE + 1

) N αMIncr

NMIncr
(4.27)

whereN is the number of iterations that spans more than one load increment.αMincr defines
the ratio of the multi-incremental super elements to the total super elements in the FE model.
The update is performed for the incremental and the multi-incremental super elements after
NIncr and NMIncr iterations, respectively. It is assumed in (4.24) that the variation of the
Newton iteration cost is negligible. In (4.25), the iterative ratioαIter can substitute the
plastic ratioαP. The elastic ratioαE in (4.26) and (4.27) consists of both the incremental
and multi-incremental ratioαE = αIncr + αMIncr. It is conditionally required thatNIncr and
NMIncr are smaller or equal toN andNIncr is smaller or equal toNMIncr

For simplicity, the elastic/plastic BUILD ratioβ and the elastic/plastic UPDATE ratioη
can be assumed equal. This simplifies CITERT, CINCRT and CMINCRT and consequently
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the analytical formula of SPEED for the three domain method

CITERT =
( 1 − ST

αIter + (1 − αIter)β

)

NαIter (4.28)

CINCRT =
( (1 − ST)β

βαE − αE + 1

) N αIncr

NIncr
(4.29)

CMINCRT =
( (1 − ST)β

βαE − αE + 1

) N αMIncr

NMIncr
(4.30)

The analytical formula of the two domain method is a special case of the three domain
method. The three domain model is reduced to the two domain model if it uses no multi-
incremental super elements or it uses the same number of iterations to update the incre-
mental and multi-incremental super elements. Substituting αMIncr = 0 in (4.27) results in
CMINCRT = 0. The elastic ratio becomesαE = αIncr = 1 − αIter that reduces SPEED
model (4.24) to the two domain SPEED model that is presented in (4.13). The second
case is applying the same number of iterationsNE for updating the incremental and multi-
incremental super elements. This is equivalent to (4.13) with the use ofαE = αIncr. The
same implies to the simplified three domain SPEED.

Another special case is an elastic domain made entirely of multi-incremental or in-
cremental updated super elements. The incremental super element requires more update
compared to the multi-incremental super elements and that results in a higher SPEED
curve forαE = αMIncr thanαE = αIncr, Figure 4.7. The demonstration is carried with
αIter = αP = 0.25, N = NMIncr = 20, NIncr = 5 andβ = η = 1. Four UPDATE steps are
performed in case ofαE = αIncr while only one is performed in case ofαE = αMIncr. The
achieved SPEED curve forαE = αMIncr is the same like the SPEED curve of two domain
method forN = 20. The advantage of less update is more beneficial at low ST.

In the following case, the influence ofNMIncr on SPEED is investigated on a FE model
that has all types of update strategies. The increase ofNMIncr reduces the number of updates
within a number of iterationsN/NMIncr. This reduces the contribution of CMINCRT in
the three domain method in the denominator in (4.24), resulting in an increase of SPEED.
SPEED curves are plotted in Figure 4.8 for a model with the following settings:αIter =
αP = 0.1, αIncr = αMIncr = 0.45, N = 100, NIncr = 5 andβ = η = 1. Several values
of NMIncr are used 5,10,20,100 iterations that correspond to 20,10,5,1 updates of the
multi-incremental super elements. The increase ofNMIncr shifts up the SPEED curve. The
lower SPEED curve represents the two domain SPEED curve since a similar number of
iterations are used for both the incremental and the multi-incremental super elements. The
upper SPEED curve is a result of updating the super elements only once for 100 iterations.
As expected, the performance of the SPEED curves is better atlow ST and it decreases with
increasing ST until it reaches one at ST = 1.

4.4 Case study

In this section, the analytically derived SPEED curves are validated fora twodomain method.
The simulation of one loop of a SPIF process, introduced in Section 3.3.1, is used for the
validation. The numerical model is made of 6400 shell elements based on discrete Kirchhoff
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triangle element. The material model is introduced in Section 2.2.1. The numerical data is
extracted out of the standard Newton implicit simulation. During the simulation, the cost
of the last iteration for each increment is recorded. The iteration cost and the corresponding
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Figure 4.9: The last iteration cost of each increment (left)and the major parts ratio (right). The
data is related to the one loop standard simulation for SPIF process.

Table 4.2: CPU time for BUILD and UPDATE.

Full plastic Full elastic SPIF

BUILD (s) 1.56 1.18 1.26 β = 0.76

UPDATE (s) 2.24 0.73 0.77 η = 0.33

major parts ratio (BT,UT and ST) are plotted in Figure 4.9. The iteration costs on average
2.27 s. the averaged major parts ratio BT,UT and ST are 0.555,0.339 and 0.106 respectively.
An unexpected slight increase of BUILD cost is observed for increments 89−127.

In order to define the elastic/plastic BUILD ratioβ and elastic/plastic UPDATE ratioη,
a stretching test is performed on the same FE model. The stretching mechanism introduces
a global uniform deformation in the blank (FE model) that insures fully plastic deformation
for all integration points in the FE model. The required CPU time to perform BP and UP for
fully plastic deformation are 1.56 s and 2.24 s. The cost of a completely elastic deformation
BE and UE are 1.18 s and 0.77 s. the elastic/plastic BUILD ratioβ and elastic/plastic
UPDATE ratioη are calculated by (4.4) and (4.7) that results inβ = 0.76 andη = 0.33,
the related data is summarized in Table 4.2. In SPIF simulation, the cost of BUILD and
UPDATE are 7 % and 5 % larger than the corresponding elastic cost. This indicates that
only a small part of the model is deforming plastically.

The number of iterations per increment is also recorded during the standard Newton
simulation, Figure 4.10. Almost half of the increments requires 3 iterations while the
second half requires 2 iterations. Some increments requireat the initial stage and when the
tool approaches the corners 5−6 iterations. The plastic and the elastic ratio are assumed to
be equal to the iterative and the incremental ratio that are observed in the Iter–Incr super
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Figure 4.10: The iteration evolution of the standard simulation (left) and the super element clas-
sification for the Iter–Incr simulation (right).

element based simulation of the one loop SPIF process. The evolution of the iterative and
the incremental ratio is explained in Section 3.3.1 and plotted again here for convenience in
Figure 4.10.

Now, all the variations of the two domain analytical formulaSPEED are available.
The variations are substituted in (4.13) and the expected analytical SPEED is plotted in
Figure 4.11. Despite the observation of almost constant major parts ratio, the analytical
predicted SPEED is oscillatory. Some peaks are observed in SPEED that coincides with
the large number of iterations for those increments. For therest of the increments, the
range of SPEED variations corresponds to 2−3 iterations. SPEED is inversely proportional
to the iterative ratio, the increase ofαIter results in a decrease in SPEED and vice versa.
The averaged analytical SPEED is 1.64. The practically observed SPEED is 1.68 that is
calculated by dividing the overall CPU time of the standard Newton implicit simulation over
the super element based simulation CPU time. The analyticalformula of SPEED has a very
good agreement with the practically observed SPEED. This validates the model and it can
predict in advance the expected acceleration of an implicitsimulation by the implementation
of the super element based efficient implicit approach.

The cost of BUILD and UPDATE is influenced by the element type.This has conse-
quently an effect on the speeding factor. To demonstrate this, the one loop SPIF simulation
is performed again but with shell elements based on discreteshear triangle DST (Batoz and
Lardeur, 1989) instead of discrete Kirchhoff triangle DKT (Batozet al., 1980). Both ele-
ments have 6 degrees of freedom per node. The DST element implicitly couples the lateral
displacement with the rotation of a midsurface-normal lineby transverse shear stiffness of
the material, while in the DKT element it is explicitly coupled by enforcing zero transverse
shear strain at selected locations (Cooket al., 2002).

A slightly larger iterative ratio is observed in the simulation based on the DST element.
This indicates that almost the same speeding factor (1.68) is expected but a higher speeding
factor of 1.89 is achieved. The computing time of the simulations is listed in Table 4.3.
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Figure 4.11: The two domain analytical SPEED.

Table 4.3: The overall computing time and the correspondingspeeding factor for one loop of
SPIF simulation.

NewtonDKT Iter–IncrDKT NewtonDST Iter–IncrDST

CPU time (s) 5693.7 3393.2 8425.4 4456.8

Speeding factor 1.00 1.68 1.00 1.89

Almost the same number of iterations is required by both simulations but the DST based
simulation requires more CPU time to complete the simulation compared to the DKT sim-
ulation CPU time. In DST based simulation, BUILD and UPDATE require 1.6 and 1.33 s
while they require 1.13 and 0.74 s in the DKT based simulation, respectively. A comparison
of the major iteration cost for both simulations is shown in Figure 4.12. Solving the system
of equations requires the same CPU time in both simulations.Considering the cost ratio
perspective, an increase is observed in UPDATE cost ratio for the DST simulation com-
pared to the DKT ratio while a decrease is observed in BUILD and SOLVE. This results in
an overall increase of the achieved SPEED for the DST based simulation compared to the
achieved SPEED for the DKT based simulation
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Figure 4.12: A comparison of the major iteration cost (left)and cost ratio (right) between the
DKT based simulation and the DST based simulation. The results are presented for
the first iteration of increment number 100 in the standard Newton simulation.

4.5 Summary and conclusions

The speed factor (SPEED) measures the efficiency of the superelement based efficient
implicit approach in accelerating the standard implicit simulation of localised deformation
processes. SPEED is defined as the CPU time cost of one Newton increment to the cost
of one increment of the efficient implicit time integration procedure. SPEED is influenced
by several factors. These factors are the number of performed iterations, the combination
of the different update strategy ratios, the used update strategies and the major parts cost
of the Newton iteration (BUILD, UPDATE and SOLVE). The majorparts ratio of Newton
iteration depends on the material model and the element type.

An analytical formula that combines all of these factors is developed in order to un-
derstand the computational performance of the efficient implicit simulation for localised
deformation. In Section 4.2, The two domain analytical formula of SPEED is developed.
The incremental cost of the two domain efficient implicit method can be split into three
parts: the cost of the iterative domain, the cost of solving the entire system of equations and
the cost of the incremental domain. The cost of solving the system of equations and the iter-
ative domain are linearly scaled by the number of iterations. The incremental domain cost
is consumed once per increment. The iterative and the incremental domain costs are func-
tions of the iterative ratio, BUILD and UPDATE ratio and the elastic/plastic ratiosβ andη.
SPEED is enhanced by reducing either the SOLVE ratio or the iterative ratio. Also, SPEED
performs better with a larger number of iterations or by increasing the elastic/plastic ratios.
A simplified upper limit of SPEED is found to be inversely proportional to the SOLVE ratio
and the iterative ratio. Theoretically, the SPEED can go to infinity at negligible SOLVE
ratio combined with zero iterative ratio.

The analytical formula of SPEED is extended in order to predict the efficiency of the
three domain approach (Section 4.3). Now, SPEED is defined asthe ratio of cost for a
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number of increments with the standard Newton method to the cost of the three domain
method for the same number of increments. The cost for the three domain method can
be split into four parts: the cost for the iterative domain, the incremental domain, the
multi-incremental domain and the cost of solving the entiresystem of equations. Solving
the system of equations and updating the iterative domain are performed every iteration.
The incremental domain is updated every increment while themulti-incremental domain is
updated only once. The SPEED curve of the three domain methodis higher than the curve
of the two domain method, it accelerates the implicit methodmore than the two domain
method for the same number of increments. The three domain algorithm performance has
similar response as the two domain algorithm regarding the iterative ratio, the SOLVE ratio
and the elastic/plastic ratioβ.

A demonstrative case study is analyzed in Section 4.4. The two domain analytical
formula of SPEED is applied to the implicit simulation of performing one loop of SPIF
process. The two domain analytical formula of SPEED has a very good correspondence
with the practically observed speed factor. The average predicted SPEED for the simulation
is 1.64 while the two domain method practically accelerates the simulation by 1.68. This
verifies that the model is robust and it can predict in advancethe expected SPEED of an
implicit simulation for localised deformation.

It becomes clear that the efficient implicit method is suitable for intermediate scale
simulation. The SOLVE cost is a crucial factor regarding theachieved SPEED. For this
reason, numerical techniques are applied in the following chapter in order to keep SOLVE
ratio as low as possible during the implicit simulation. This will enhance the achieved speed
factor.





5. Static condensation and remeshing

The performance of the efficient implicit method can be enhanced by coupling the method
with other numerical techniques. In this chapter, two numerical techniques are emphasized.
The first technique is the static condensation (Section 5.1). It reduces the size of the system
of equations and that may accelerate the computation by reducing the time consumed by the
solver. In Section 5.2, the h-adaptivity is investigated. It keeps the FE mesh as small and
efficient as possible. One level of refining and coarsening isstudied for the SPIF process
simulation.

5.1 Static condensation

Static condensation is used to reduce the size of the system of equations. This application
had a major advantage in structural engineering, speciallyfor analyzing large structures
that were often beyond the capacity of the computers in the past. Substructuring (super
element) is a way to organize the static condensation of large linear systems arising from
the discretization of partial differential equations (Smith et al., 1996). Introducing the super
element discretization of a FE model in Section 3.1 providesthe background to statically
condense the super elements. For the incrementally and the multi-incrementally updated
strategies, the tangent stiffness matrix is constant foranincrement ora numberof increments.
The internal force vector is linearly updated by the multiplication of the tangent stiffness
matrix and the incremental displacement. This pseudo-linear treatment is applied after the
nonlinear update of the geometrical and the material nonlinearities in the previous steps. The
incremental and the multi-incremental super elements are suitable for static condensation
because of the pseudo-linear treatment. The iterative update strategy forces a full nonlinear
Newton update every iteration and that does not fit with the linearity assumption of static
condensation.

The super element degrees of freedom can be classified into master DOFs and slave
DOFs as shown in Figure 5.1. For pseudo-linear super elements, the master DOF is defined
as the external DOF that may be connected to another super element and the slave DOF is
an internal DOF that belongs only to one super element. All DOFS for the iterative treated
super element are master DOF. The pseudo-linear super element tangent stiffness matrix,
incremental displacement and internal force vector are assembled based on the master–slave
classification as
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Figure 5.1: The classification of the super element DOFs intomaster and slave DOFs.

[

Kss Ksm

Kms Kmm

]Super

︸ ︷︷ ︸

K Super
int

(

ds

dm

)Super

︸ ︷︷ ︸

dSuper

=
(

fs
fm

)Super

︸ ︷︷ ︸

f Super
int

(5.1)

where the subscript m and s refer to master and slave DOFs,respectively. The slave (internal)
DOFs are statically condensed to their master (external) DOFs

dSuper
s = (K Super

ss )-1( f Super
s − K Super

sm dSuper
m ) (5.2)

Such that the condensed form becomes

K Super,c
int dSuper

m = f Super,c
int (5.3)

where
K Super,c

int = K Super
mm − K Super

ms (K Super
ss )-1 K Super

sm (5.4)

f Super,c
int = f Super

m − K Super
ms (K Super

ss )-1 f Super
s (5.5)

Now, the condensed global tangent stiffness matrix is assembled of the condensed pseudo-
linear super elements and the iterative super elements tangent stiffness matrix

K Glob,c
int =

I T
∑

i=1

K Super
int,i +

P L
∑

i=1

K Super,c
int,i (5.6)

where IT and PL are the number of the iterative super elementsand the pseudo-linear super
elements, respectively. Similarly, the condensed global internal force vector is assembled.

f Glob,c
int =

I T
∑

i=1

f Super
int,i +

P L
∑

i=1

f Super,c
int,i (5.7)
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The size of the global condensed system of equations is smaller than the original size
of the global system of equations (non-condensed). This difference in size is a result of
condensing the internal DOFs of the pseudo-linear super elements, both the incremental
and multi-incremental super elements. On the other hand, the global condensed system of
equations is denser than the original system of equations. Synchronized with the update
strategy, the static condensation procedure is performed only once for the incremental super
element and once for a number of increments for the multi-incremental super element. This
is performed after the nonlinear update of the tangent stiffness matrix and the internal force
vector. After the convergence of the load increment, the pseudo-linear super element slave
DOFs are evaluated by (5.2).

The advantage of applying the static condensation is to reduce the time required for
solving the system of equations. As discussed previously, the two domain methodor the three
domain method has no influence on the cost of solving the system of equations (SOLVE)
because all DOFs are retained. Keeping in mind that solving the system of equations is
performed every iteration and considering the two domain method that is introduced in
Section 2.3.2 and the related analytical formula presentedin Section 4.2, the condensation
procedure becomes an additional cost to the incremental cost of the two domain method.
The analytical formula is extended to include the condensation cost and the new cost of
solving the condensed system of equations as

SPEEDc =
NT

CON+ N Sc
︸ ︷︷ ︸

N S

+CITER+ CINCR
(5.8)

where CON is the cost of performing the condensation andSc is the cost ratio of solving
the condensed system of equations. The condensation cost and the cost of solving the
condensed system of equations every iteration replace the cost of solving the original system
of equations every iteration. The cost of building the system of equations and updating the
stresses of the iterative and the incremental part of the FE model (CITER, CINCR) are
independent of the used strategy to solve the system of equations, condensed or not. In
order to benefit from solving a condensed system, the sum of condensation cost and the
cost of solving the condensed system of equations has to be less than the cost of solving the
original system of equations

CON+ N Sc < N S (5.9)

This results in a smalleroverall incremental cost (the denominator in (5.8)), and that increases
the achieved SPEED. Otherwise, if the resulting cost of the condensation and solving the
condensed system is larger than solving the original system, SPEED is reduced compared to
the non-condensed solution method. This can be a result of the large cost of the condensation
procedure or an increase in the cost of solving the condensedsystem of equations because
it is less sparse (denser).

Similarly, the three domain analytical formula of SPEED canbe extended to include the
influence of the condensation. It becomes

SPEED=
NT

N CONIncr

NIncr
+

N CONMIncr

NMIncr
+ N Sc

︸ ︷︷ ︸

N S

+CITER+ CINCR+ CMINCR
(5.10)
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where CONIncr and CONMIncr are the cost of condensing the incremental super elements and
the multi-incremental super elements, respectively. Bothare scaled with the same ratio as
CINCR and CMINCR, (4.26)and (4.27)respectively. The multi-incremental update strategy
has lower update frequency compared to the incremental update strategy and definitely
the condensation is performed in a lower frequency for multi-incremental super elements
compared to the incrementally updated super elements.

The condensation is performed based on the LU-factorization method (Kreyszig, 1993).
It is a relatively less expensive method to solve a system of equations compared to the
standard Gauss elimination. The system matrix (A) is decomposed into an upper triangular
matrix (U ) and a lower triangular matrix with diagonal of ones (L) as

Ax = LUx = Ly = b (5.11)

wherex is the unknown vector solved fromUx = y and b is the right-hand side. Using
the LU-factorization method to derive(K Super

ss )-1K Super
sm is more efficient than determining

(K Super
ss )-1 explicitly if the number of the slaves is larger than the number of masters. Because

K Super
ss is a symmetric positive definite matrix, it is found thatU = LT without imposing

conditions on the main diagonal. This special case of the LU-factorization method is known
as Cholesky’s method.

Actually, f Super
s and each column ofK Super

sm can be used as the right-hand side vector b.
By applying this, the(K Super

ss )-1 K Super
sm and(K Super

ss )-1 f Super
s are found. These operations

are performed using Sun Performance LibraryTM package that is developed for sparse linear
systems of equations.

5.1.1 Case study

In this case study, an implicit simulation of drawing a line in a blank by a SPIF process is
simulated. An initially flat numerical blank of 300×300×1.2mm3 is discretized by 14400
discrete shear triangular shell elements. Through the thickness of the element 5 integration
points are used (in total 15 per element). The drawn line is 1 mm deep and 260 mm long. It is
parallel to the blank edge and 20mm away from the edge. The blank edges are clamped. The
line is drawn by an analytical spherical tool with a 20 mm diameter. The focus of this case
study is to investigate the computational performance of the condensation procedure. For
that, a reference simulation is performed by the standard Newton method. The two domain
method is used as efficient approach to accelerate the standard simulation. The condensed
two domain approach (Condensed) performance is compared tothe non-condensed two
domain method (Original).

The standard Newton implicit simulation performs 352 load increments and it requires
on average 3 iterations per increment to converge and 168 line searches are performed in
total. The overall CPU time for this simulation is 6574 s (1.82 hrs). The averaged cost for a
Newton iteration is 5.69 s that is split into 49.6 %,12 % and 38.4 % for building the system
of equations, solving it and updating the stresses respectively. For the two domain method, 4
superelements are classified for the iterative update strategy and the rest of the superelements
are classified for the incremental update strategy. Different sizes of the super element are
considered that are 4,16,36,64,100,144 and 400 elements per super element. They are
referred as S4,S16,S36,S64,S100,S144 and S400, respectively. This corresponds to



5.1 Static condensation 67

Table 5.1: The performance of the original and the condensedtwo domain simulations.

αIter Condensed Original Condensed Original
CPU (s) CPU (s) SPEED SPEED

S4 0.001 2530 2499 2.55 2.57

S16 0.004 2561 2463 2.51 2.61

S36 0.010 2733 2545 2.36 2.53

S64 0.018 2943 2583 2.19 2.49

S100 0.028 3296 2625 1.95 2.45

S144 0.040 3824 2677 1.68 2.41

S400 0.111 8481 2971 0.76 2.16

group the FE mesh into 3600,900,400,225,144 and 36 super elements. Constraining the
iterative domain to include 4 super elements influences the achieved accuracy, but in this
case study that is not of interest here.

The main focus is to investigate the achieved SPEED for the Condensed and the Original
two domain method. The achieved SPEED for different super elements is summarized in
Table 5.1. As expected, the increase of the super element size results in a decrease of the
achieved SPEED for both two domain methods because of the corresponding increase in
the iterative ratio (always 4 super elements are iteratively treated). An unexpected increase
of SPEED is observed in the Original method at S16. In general, the Original two domain
method has a higher achieved SPEED than the Condensed two domain method except at S4
where they are almost equal. The best achieved SPEED is 2.57 for S4 by the Original two
domain method. The lowest performance of the Original method SPEED is observed for
S400 and it is 2.16. In the Condensed two domain method, the increase of the super element
size results in more significant decrease of the achieved SPEED. At S400, the Condensed
two domain SPEED is 0.76 (less than one) that violates the golden rule of the efficient
implicit simulation method. At this setting, the condensedtwo domain method slows down
the implicit simulation instead of accelerating it.

The main difference between the presented two domain methods is performing the
static condensation or not. As explained, the SPEED performance is influenced by the
condensation cost and the cost of solving the condensed system of equations. The cost of
condensation and the cost of solving the condensed system ofequations for different super
elements are shown in Figure 5.2. For S400, the static condensation results in an increase
of solver cost almost by 300 %. The condensation cost is 5 times the cost of solving the
original system of equations (strange!). This explains thebad achieved SPEED (0.76),
slowing the standard Newton implicit simulation. In case ofS144 and S100, the cost of
solving the condensed system of equations shows a slight increase or is almost equal to the
cost of solving the original system of equations. Because ofthe cost of the condensation
of these super element sizes, the achieved SPEED for the Condensed method is going to be
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Figure 5.2: The cost of condensing (left) and solving (right) the system of equations for different
super element sizes.

less than the original SPEED.
A reduction in the cost of solving the condensed system of equations is observed for

S4-100. A better SPEED can be expected for these settings. Now, the condensation cost
determines the increase or the decrease of the achieved SPEED compared to the Original
SPEED. Checking (5.9), the sum of the condensation cost and solving of the condensed
system of equations for all settings is larger than the time required to solve the original system
of equations for 3 iterations, as shown in Figure 5.3. To conclude: the static condensation
is efficient only if the cost of solving the condensed set of equations is significantly reduced
and it has to compensate for the cost of the condensation. Theuse of condensation has to
be investigated to avoid a lower achieved SPEED. The presented description of the static
condensation is deficient.

5.2 Adaptive remeshing

The crucial issue in single point incremental forming simulation is performing thousands of
load increments on a relatively fine FE mesh. The small radiusof the forming tool requires
a fine mesh for the small contact area but is not required for the entire workpiece. The small
contact area travels all over the workpiece in order to introduce the incremental deformation
(it is a special feature of SPIF process). Basically, the FE model is made fine enough to
capture the introduced deformation despite the knowledge of the current location of the
forming tool. This is an inefficient modelling description of the workpiece. Alternatively,
a relatively coarse FE model for the entire model combined with small traveling fine mesh
would be more efficient.

The h-adaptivity method fits the efficient modelling needs. It is based on adapting the
number of grid points and changing the mesh connectivity (Huertaet al., 1998). Grid points
are added to areas where more accuracy is demanded and it can be deleted in areas where
the solution is accurate enough. In SPIF simulations, the h-adaptivity method is used to add
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Figure 5.3: The cost of condensing and solving the system of equations for different super element
sizes. For the Original method CON= 0 andSc = S.

grid points in the small area of contact. As the tool moves, more grid points are added to
the FE model in the vicinity of the tool. The grid points addedin the former tool location
are deleted. This simulates the movement of a fine mesh embedded in a relatively coarse
FE model.

Within this brief investigation, one level of h-adaptivityis implemented in the in-house
FE package DiekA. Actually, the h-adaptivity refinement procedure of triangular shell ele-
ments by Meinders (2000) is extended by one level of coarsening. Dependingon a particular
remeshing criterion, a group of elements is nominated for refinement. The neighboring ele-
ments of these nominated group of elements have high potential to be refined in the following
load increments. Both the nominated elements and their neighboring are called mother el-
ements and refined once. Each mother element is divided into four equal elements, the
newly created elements are called refined elements. To preserve mesh compatibility, each
neighbor element of the mother elements is split into two equal elements. Any two split
elements born out of the same mother element can be united andrefined into four refined
elements for the next load increments, if it is required. Meanwhile, the coarsening algorithm
performs only on the refined and split elements. It degenerates the previous connectivity in
a reverse order. This limits the growth of number of elementsbetween the initial number
of elements (lower limit) and refinement of the entire FE model once (upper limit). An
example for element generation and degeneration is shown inFigure 5.4.

The refinement is performed when a specified error exceeds a threshold. An error
indicator is used instead of an error estimator since it is computationally cheaper (Huerta
et al., 1998). Particularly, the geometrical error indicator developed by Bonet (1994) is
used. It measures the variation of the geometry within the blank. A set of tangent axes
is determined for each element and it is constant within the element. The variation of
these sets of tangents from one element to its neighboring elements indicates the variation
of the geometry which cannot be represented by the facet element. Therefore, a nodal
averaging technique is used to quantify this variation. If the variation within a group of
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Figure 5.4: The description of the remeshing algorithm. Theinitial mesh (left) that is partially
refined (middle). The coarsening of lower left part and the refinement of the upper
right of the FE model (right).

elements exceeds a threshold, that group of elements is refined. On the other hand, if the
variation within a group of refined elements is decreased, coarsening takes place on that
group regenerating the mother elements.

Mapping

When a new grid connectivity is created, the state variableshave to transfer from the old
mesh to the new mesh. There are several approaches. One approach is using the old nodal
value to evaluate the new nodal value, then determining the state variables at the integration
points (Meinders, 2000). Another approach is to use a patch recovery, that depends on
selecting specific locations within a group of elements, creating a smoothed field out of it
and evaluate the new data. For instance, a bi-linear smoothed field requires at least four
points to be selected within the group of elements. Further details on patch recovery using
plane elements can be found in (Cooket al., 2002). The chosen approach applies a least
square approximation. The method fits a linear field based on all available integration points
within a group of elements,not on selected points only. The location of the integration points
and their values are used to create the linear field, then the location of the new integration
point is used to determine its value.

Regardless of the used approach for mapping, data transfer predicts the exact value
for the state variables when it maps mother element into split elements or refined elements.
However, it eitheroverestimates orunderestimates the newvalue for the following remeshing
cases: split into refined, refined into split, refined into mother and split into mother. The error
is introduced because of fitting piecewise linear fields intoone linear field. The least square
method is the optimum approach, in the sense of accuracy. It minimizes the error during data
transfer because of the use of all available integration points and it is not computationally
expensive compared to the other approaches.

The correctness of implementing the least square method formapping on one level of
remeshing has to be validated before simulating the SPIF process. For that purpose, an
initial linear field for the equivalent plastic strain is prescribed for a FE strip model. The
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Figure 5.5: Linear field validation test for one level remshing using least square method.

Figure 5.6: Tool path description of pyramidal shape SPIF process.

strip experiences 600 remeshing combinations. Theoretically and numerically within the
machine accuracy, the linear field must remain the same. Thisis achieved in the one level
of remeshing implementation test as shown in Figure 5.5.

5.2.1 Case study

A single point incremental forming process of a 45◦ pyramidal shape is simulated to verify
whether the one level remeshing technique leads to significant CPU time reduction. The 17
mm deep pyramid is made out of a 100× 100× 1.2 mm3 initially flat blank. An analytical
spherical tool of 10 mm radius is used. The tool follows a counter-clockwise tool path for
34 loops. In each loop, the tool moves 0.5 mm vertically downwards. At a fixed vertical
position, the tool performs the in-plane tool path. The simulation finishes when the tool
reaches the end of loop 34, the first and the final loop description is shown in Figure 5.6.

The numerical blank is discretized with 3200 discrete Kirchhoff triangular shell ele-
ments. It is used as a reference model. Each element has in total 15 integration points. A
simple material model is used (Section 2.2.1), representative for a mild steel. Two implicit
simulations are performed using the h-adaptivity method. An intermediate coarse initial
mesh of 800 triangular shell elements is used for these simulations. In the first simulation,
the h-adaptivity introduces one level of refinement only (Refine) while one level of remesh-
ing, refining and coarsening, is introduced in the second simulation (Remesh). During the
h-adaptivity simulations, the number of elements is expected to vary between 800 and 3200.

The simulations are performed on a single core of DUAL Intel Xeon 3.06 GHz computer,
the performance of the simulations are summarized in Table 5.2. The reference simulation,
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Table 5.2: The simulations performance.

Reference Refine Remesh

Nr. of increments 8087 8169 8154

Nr. of elements 3200 800-2032 800-2014

Nr. of Nodes 1681 441-1057 441-1048

CPU time (hr) 19.9 10.24 9.93

SPEED 1.0 1.94 2.00

performed on a fixed fine FE mesh, requires 19.9 hr to finish 8087 load increments while
the remeshing simulation finishes 8154 load increments in 9.93 hr. The refinement only
simulation performs 15 load increments more than the remeshing simulation and it requires
10.24 hr. The same terminology of SPEED in measuring the gained benefit in CPU time
is used, dividing the reference CPU time cost over the used approach CPU time cost. The
h-adaptivity approaches accelerate the reference simulation by almost the same factor of
2. The advantage of the h-adaptivity is to keep the number of grid points (nodes) and
consequently the number of elements as low as possible.

The evolution of the grid points during the simulations are shown in Figure 5.7. The
use of a geometrical variation indicator triggers the overall increase of number of nodes
because of the shape development of the blank. By the use of the refinement approach only,
an increase is observed in the number of nodes during intermediate stages of the simulation.
The remeshing approach results in an increase of the grid points that is in general less than the
growth of the number of nodes in the refinement approach. At the final stage of the process,
the remeshing approach requires slightly less grid points than the refinement approach. The
remeshing approach discretized the final geometry using 1048 nodes (2014 elements) while
the geometry is discretized by 1057 nodes (2032 elements) using the refinement approach
only. The final FE mesh of the simulations is shown in Figure 5.8.

In general, the results achieved by the refinement approach have a better agreement
with the result achieved by the reference simulation compared to the results achieved by
the remeshing approach. Considering the stretching strainat mid-integration point through
thickness, The maximum achieved equivalent plastic strainat the reference FE mesh is
0.438. The refinement approach predicts almost the same maximum equivalent plastic
(0.44) while it is overestimated by 6.4 % (0.466) using the remeshing approach (Figure 5.9).
The maximum achieved equivalent plastic strain (reference) at the outer-integration point,
that is representative of combined bending and stretching strain, is 0.875. It is overestimated
slightly by 3 % (0.901) using the refinement approach and significantly by 19.1 % (1.042)
using the remeshing approach. The better agreement of the refinement approach with
standard simulation holds also for the achieved distribution of the equivalent plastic strain
compared to the remeshing approach.

The remeshing approach performs 41 combinations of refiningand coarsening during
the simulation. Several elements have been refined and coarsened several times. For these
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Figure 5.7: The evolution of the grid points for the pyramid SPIF simulation with different ap-
proaches.

Figure 5.8: The reference FE mesh (left) and it is fixed for theentire simulation. The final stage
FE mesh for the the refinement approach (middle) and the remeshing approach (right).

elements, applying the coarsening approach introduces errors because of smoothing the
piecewise linear fields into one linear field. This error is larger at higher levels of strain
than at lower levels of strains. This coarsening is followedby refinement in the following
loop. Refinement results in significant deformation becauseof projecting the newly created
grid points, those are in contact with the forming tool, to the tool surface to adapt to the
tool geometry (Meinders, 2000). Mapping the data out of formerly smoothed fields results
in further errors. This explains the significant overestimation at the outer integration point
compared to the mid-integration point for the remeshing approach. To conclude: both h-
adaptivity approaches successfully accelerate the reference simulation by a factor of 2. The
results achieved by the refinement approach has a better prediction compared to the result
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Figure 5.9: The achieved equivalent plastic strain at the mid-integration point through thickness
(left) and the outer integration point (right). The resultsare achieved by the reference
(top), refinement (mid) and remeshing approach (bottom).

achieved by the remeshing approach.
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5.3 Summary and conclusions

The efficient implicit method applies a pseudo-linear treatment for the incremental and
the multi-incremental super elements. Within this treatment for a number of increments,
the tangent stiffness matrix is constant and the internal force vector is linearly updated
using the fixed tangent stiffness matrix. Therefore, the static condensation of the internal
degrees of freedom for pseudo-linear updated super elements is investigated. It reduces the
global size of the system of equations and that is expected toreduce the CPU time used in
solving the reduced system of equations. The static condensation is performed using an LU-
factorization method. The implementation and the performance of the static condensation
on the efficient implicit method is presented in Section 5.1.A demonstrative case study
shows that the static condensation reduced the CPU time of solving the system of equations
but not significantly to compensate the cost of condensing the system of equations. For
some settings, the cost of solving the condensed system of equations becomes larger than
the cost of solving the original system of equations. This results in reducing the achieved
speeding factor by the efficient implicit method and even requiring more time than the
standard implicit simulation.

The second numerical technique studied in this chapter is the h-adaptivity method, in
Section 5.2. Particularly, one level of refining and coarsening is considered. Grid points
are added to areas where more accuracy is demanded and they can be deleted in areas
where the solution is accurate enough. The cost of simulating an intermediate coarse
FE model is less than simulating the reference FE model and this is the main advantage.
Repeated remeshing (refining and coarsening) for the SPIF process simulation results in
overestimation of the equivalent plastic strain because ofintensive mapping. Refining only
maintains the accuracy compared to the reference FE model and it accelerates the reference
simulation by the same factor as the remeshing method, it is two times faster than the
reference model. The refinement approach has a high potential if it is integrated with the
efficient implicit method to reduce the consumed time by the SPIF simulation by factors and
maintaining the accuracy. A demonstrative case study will be presented in the next chapter
investigating this claim.





6. Applications

Two real-life incremental forming processes are simulatedfor demonstration. The first
application is to simulate the production of a 20 mm deep 45◦ pyramidal shape by a single
point incremental forming process, described in Section 6.1. The continuous bending under
tension of a strip by a roll set is described in Section 6.2, where 16 cycles of forward and
backward longitudinal movement of the roll set are analyzed.

6.1 Pyramidal shape

In this demonstrative application, the 45◦ pyramidal shape produced by SPIF is simulated.
First of all, the efficient implicit method with no further enhancements is used to accelerate
the standard implicit simulation. In general, a simulationis strongly influenced by its
settings. Here, the influence of the increment size and the used contact model on the standard
simulation and consequently on the efficient implicit method are studied. Afterwards,
the achieved benefit of using the efficient implicit method ispresented for two simulation
settings considering the manufacturing of a 45◦ pyramidal shape. Finally, the advantage of
combining the adaptive remeshing method and the efficient implicit method in accelerating
the standard implicit simulation of the SPIF process is presented.

6.1.1 Influence of increment size

The increment size in the implicit integration procedure islimited by the accuracy require-
ment and the robustness of the Newton procedure (Belytschkoet al., 2007). In general, the
size of the load increment used in the implicit time integration method is much larger than
the increment size in the explicit time integration method.For an incremental forming pro-
cess e.g. SPIF, modelling the sequence of small deformationincrements requires thousands
of numerical increments to be performed. Using too large numerical increments represents
the simulation of a large number of penetrations instead of continuous incremental forming.
The use of too small numerical increments within the implicit method results in tremendous
computing times. Many factors influence the optimal size of the of load increment size like
the FE mesh discretization and complexity of the used material model.

The size of the load increments influences the convergence ofthe Newton procedure
and consequently the required number of iterations per increment. This has an impact
on the overall CPU time required to finish a simulation. A ruleof thumb can be used to
define the size of the load increment in order to satisfy the requirements of SPIF process.
Simply, an element has to be in contact with the forming tool for 2 or 3 load increments to
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model a continuous incremental forming process. This simple rule does not consider the
robustness of the Newton iterative procedure that is directly influenced by the used contact
description, the complexity of the material model and element type. Therefore, an automatic
load increment size adjustment was developed in the used in-house FE package DiekA to
adapt the increment size to the convergence behavior of the Newton procedure.

Basically, the easiness to reach convergence is used as an indicator to scale the load
increment size. An easy convergence of the current load increment results in an increase of
the next load increment size. If the convergence of the current load increment is not reached
the current load increment is recalculated again with a smaller load increment size. To
prevent a large fluctuation in the load increment size, the convergence history of a number
of previous load increments is used to determine the change of the load increment size for
the following increments. Also an upper limit and a lower limit is used to prevent the use
of too large/small load increments.

Case study

The simulation of one loop of a SPIF process (introduced in Section 3.3.1) is used here
to demonstrate the influence of the load increment size on theperformance of an implicit
simulation. A fixed load increment is used for the first simulation with 0.1 mm / increment
in z-direction introducing a penetration of 0.5 mm and 0.25 mm / increment for the in-plane
movement of the forming tool. The second simulation uses thesame increment sizes with
automatic adjustment of the increment size. The increment size can be enlarged 3 times and
reduced 5 times.

The predicted vertical force during the simulation is shownin Figure 6.1. The fixed
increment size simulation predicts large oscillation between an uppervalue and a lower value
of the predicted force. The uppervalue presents the vertical loading force of the forming tool
when it deforms a node to the prescribed location. Actually,the deformation is introduced
by the movement of the tool over a series of nodes as shown in Figure 6.2. If the tool moves
from one node to deform the next node a smooth (oscillation free) force measurement
will be predicted that passes through the upper limit. This presents a continuous loading
forming which is the real process. Because of the increment size, the lower limit presents
the force at forming tool moving from one node to another. It shows that the numerical blank
springs back because of less contact between the forming tool and numerical blank. The
adjusted increment size simulation predicts almost the same upper limit of loading force as
the fixed increment size simulation. It also presents a better increment size that reduces the
nonphysical oscillation while the tool moves from one node to another.

The performance of both simulations is summarized in Table 6.1. The fixed increment
size simulation performs 965 load increments in 5693.7 s. These increments consist of 2428
iterations and 438 line searches. For the automatic adjusted increment size simulation, the
original increment size is increased by almost a factor of 3.It performs 328 load increments
in 3250.4 s. The adjusted increments use 1371 iterations and 253 linesearches. The
CPU time is proportional to the number of the used iterations, not the used increments.
Large increment sizes require large number of iterations per increment to converge, the
adjusted increment simulation performs on average 4.2 iterations per increment while the
fixed simulation requires 2.5 iterations per increment to converge.
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Figure 6.1: The predicted force in SPIF process by fixed increment size and automatically adjusted
increment size.

Figure 6.2: Schematic of continuous loading.

The efficient implicit method is expected to perform better with adjusted increment size
simulation compared to the fixed increment size simulation because of the larger average
number of iterations per increment observed in the adjustedincrement simulation. The two
domain efficient implicit method is used. The super elementsare classified either for iterative
or incremental update strategy. The6400 shell elements aregrouped in100 superelements. A
tool indicator is used with a fixed iterative ratio of 0.04. The two domain method accelerates
the fixed increment size simulation by a factor of 2.26 while the adjusted increment size
simulation is accelerated by 2.91 with a total CPU time of 2522.1 s and 1115.3 s,respectively.
The performance of the two domain simulations is summarizedin Table 6.1
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Table 6.1: The simulations performance.

Fixed increment Adjusted increment

Nr. of increments 965 328

Nr. of Iterations 2428 1371

Iteration / increment 2.5 4.2

Nr. of line search 438 253

Newton CPU time (s) 5693.7 3250.4

Two domain CPU time (s) 2522.1 1115.3

SPEED 2.26 2.91

6.1.2 Influence of contact model

The interest in this section is to focus on the influence of contact models on the performance
of SPIF implicit simulation. The penalty model and the augmented Lagrangian model are
used in this thesis. Briefly, the penalty method defines the contact constraint as a multi-
plication of the gap function and a penalty parameter. A gap function defines the distance
between possible contact nodes. The augmented Lagrangian model is a compromise be-
tween the penalty model and the Lagrangian multiplier model. In the Lagrangian multiplier
model, the contact constraint is imposed in the variationalequations by multiplying the
gap function by a multiplier. The augmented Lagrangian model may be achieved by using
an iterative update for the multiplier with a penalty-like model. The reader is referred to
Zienkiewicz and Taylor (2005) for the derivations and the formulations of the models.

Defining a proper penalty parameter is a challenge. It is usedin both contact models.
The use of a large penalty parameter results in a stiff contact stiffness that slows the con-
vergence of the Newton iterative procedure. A small penaltyparameter results in a large
penetration between the bodies in contact which reduces thequality of the achieved results.
The advantage of the augmented Lagrangian model is the update of the Lagrangian mul-
tiplier similar to the linearized model in the Newton iterative procedure. This update may
enhance the convergence of the contact. The update can be performed after each Newton
iteration or in an added iteration loop after the convergence of the Newton iteration loop.
This results in the use of more iterations.

The use of more iterations per increment in the augmented Lagrangian model may still
be within acceptable limits for simulating global forming processes e.g. deepdrawing by
additional hours of CPU time. In incremental forming process, for instance SPIF process,
thousands of increments are performed on a relatively fine FEmesh. As discussed in
previous sections, the cost of the iteration is expensive therefore performing thousands of
extra iteration is going to cost additional days of CPU time.
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Table 6.2: The simulations performance.

Penalty Augmented
1 loop / 5 loops 1 loop / 5 loops

Nr. of increments 327 / 1575 327 / 1673

Nr. of Iterations 1000 / 5028 1046 / 6965

Nr. of line search 246 / 832 238 / 2913

Newton CPU time (s) 2468.0 / 12672.6 2570.4 / 21020.4

Case study

The focus in this case study is to investigate the influence ofthe used contact model on
the performance of SPIF implicit simulation. The AugmentedLagrangian model and the
penalty model are used. The used penalty parameter is 1000 N/mm3. The numerical model
here is similar to the used model in the previous case study except a less tight convergence
criterion is used, it is 0.01. Five loops are performed, that produces a shallow 2.5 mm deep
45◦ pyramidal shape. The convergence criterion for the Augmented Lagrangian loop allows
a penetration between the forming tool and the sheet that is less than 0.05 mm.

At the end of the first loop, it is observed that both simulations have almost the same
computational performance. The augmented simulation finishes 1046 iterations in 2570.4
s while the penalty simulation performed only 1000 iterations in 2468.0 s. A significant
difference is observed at the end of the five loops. The performance of the simulations is
summarized in Table 6.2. The Augmented simulation CPU time is 21020.4 s for performing
6965 iterations while the penalty simulation finishes 5028 iterations in 12672.6 s. The
augmented simulation requires 1973 additional iterationsand 2081 additional line searches1

to the used 832 line searches in the penalty simulation. Thisresults in the additional overall
CPU time.

The predicted tool vertical force by the contact models is shown in Figure 6.3. There
are four pronounced peaks in the predicted vertical force that coincide with forming the
material in the vicinity of the corner. Near the corner, the numerical blank is clamped at
both edges that makes it stiffer to deform. Moving the tool from one corner to the following
corner, the tool deforms material that is clamped at one sidewhich is less stiff compared to
doubly clamped sides of the blank and consequently a reduction in the predicted tool vertical
force is observed. The oscillation in the predicted force isexplained in Section 6.1.1 (where
augmented Lagrangian model is used) by the influence of the increment size. The second
reason is the used contact model hence the penalty model predicts a smoother force compared
to the predicted force by the augmented Lagrangian model.

In the penalty model, an initial estimation is made that nominateda group of nodes to have

1The line search is a method to increase the effectiveness of the Newton method for slow convergence because
of roughness of the residual force vector or deviating residual force vector from the linearized model (Belytschko
et al., 2007)
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Figure 6.3: The predicted force in SPIF process by the augmented Lagrangian model and the
penalty model.

contact with the tool. This initial estimation is recalculated in the augmented Lagrangian
model within the iterative update of the Lagrangian multiplier and the penalty parameter.
This results in finding the actual contact area that is smaller than the initial prediction. The
initial prediction by the penalty model provides a large area (including more nodes). It
helps in a smooth transition of the tool from a node to another(that is going to have contact
in the next load increments) and consequentally in a smooth force prediction. Less nodes
in contact, as predicted by the augmented Lagrangian model,results in less contact (rough
transition) while the tool moves from one node to another.

At the final stage of the one loop simulation, the augmented Lagrangian model predicts
a lower vertical tool force than the penalty model. The tool returns to the starting point
because of the prescribed tool path of a loop, a sample of the loop tool path is shown in
Figure 5.6. In the augmented simulation, the tool experiences the elastic force required to
deform the material back to the initially deformed position. The tool force in the penalty
simulation is higher than the one predicted by the augmentedsimulation because the tool has
to displace the blank for a larger distance. This displacement is larger than the springback
displacement and less than the sum of the springbackdisplacement and the penetration depth
in the sheet.

6.1.3 Small / intermediate numerical model

A 20 mm deep 45◦ pyramidal shape produced by the SPIF process is studied. Themain
focus is to investigate the efficient implicit method performance in accelerating the standard
implicit simulation. The pyramidal shape is made of a 100× 100× 1.2 mm3 initially flat
blank. Two tool diameters are used: 20 mm and 10 mm. The tool diameter influences the
required numerical discretization, the smaller tool requires a finer mesh. Actually, both
simulations have the same ratio of element length to the tooldiameter. The two simula-
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Table 6.3: The simulations settings.

First Second

Nr. of element 6400 25600

Shell element D. Kirchhoff T. D. shear T.

Nr. of DOF 18729 75849

contact model augmented / penalty augmented

Tool diameter (mm) 20 10

tions are performed for the different tool sizes, the simulations settings are summarized in
Table 6.3. 40 loops are performed using the same loop settings as in Section 5.2. A simple
representative mild steel material model is used (Section 2.2.1).

The first simulation can be considered as small scale numerical model (18729 DOFs).
The two domain method is used to accelerate the standard implicit simulation. The 400
super elements are classified into iterative and incremental update strategy. A simulation is
performed using the tool indicator and another simulation is performed using both the tool
and the plastic indicator. In general, the two domain methodsuccessfully accelerates the
standard implicit simulation, the simulations performance is summarized in Table 6.4. The
two domain methods achieve higher SPEED using the tool indicator only compared to the
combined tool and plastic indicator. With the tool indicator only, it accelerates the standard
implicit simulation by a factor of 2.73 compared to 1.80 for the combined indicators. This
is a result of using a smaller iterative ratio by the tool indicator (0.141) compared to the
used iterative ratio (0.358) by the combined indicator, see (4.13). The use of the augmented
Lagrangian model requires more iterations to achieve the convergence compared to the
penalty model, therefore a larger SPEED is achieved in the augmented based two domain
simulation (2.73) compared to the penalty based two domain simulation (2.18), using the
tool indicator. Almost the same number of increments, iterations and line searches are used
by the two domain method compared to the standard implicit simulation.

The xz profile at y = 0 is used to evaluate the achieved results. The Augmented
Lagrangian standard simulation has a better prediction of the xz profile compared to the
penalty based standard simulation by achieving the prescribed displacement at the bottom
of the pyramid that is 20 mm. The two domain method has a very good agreement in
predicting thexz profile with the standard implicit simulation, this holds for both contact
models. For the tool indicator based simulation, the error is limited to less than 50µm. The
use of both the tool and the plastic indicator uses a larger iterative ratio that corresponds to
better prediction of the plastic zone. This results in reducing the error in the predictedxz
profile to less than 15µm

The second simulation can be classified as an intermediate scale model. The FE mesh is
discretized using Discrete Shear Triangular shell elements. The FE model contains 75849
DOFs. A smaller tool diameter is used with the Augmented Lagrangian contact model. The
standard implicit simulation requires almost a month (29.34 days) to finish the tool path
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Table 6.4: The simulations performance of the coarse setting. The first entry belongs to augmented
based simulation and the second entry is for the penalty based simulation.

Standard Two domain Two domain
Tool Tool + plastic

Nr. of increments 10725 / 8869 10753 / 8871 10808 / 8871

Nr. of Iterations 51322 / 31526 51142 / 31410 51457 / 31515

Nr. of line search 31521 / 2140 32308 / 2090 32634 / 2143

iterative ratio 1.00 / 1.00 0.141 / 0.141 0.358 / 0.398

CPU time (hr) 49.22 / 21.35 18.04 / 9.79 27.24 / 13.70

SPEED 1.0 / 1.0 2.73 / 2.18 1.80 / 1.55

Table 6.5: The simulations performance of the fine setting.

Standard Two domain

CPU time (day) 29.34 8.86

SPEED 1.0 3.31

(Table 6.5). The two domain method with the use of the tool indicator requires only 8.86
days. It accelerates the standard implicit simulation by a factor of 3.31. It has a very good
agreement of thexz profile at y = 0 compared to thexz profile of the standard implicit
simulation. The two domain methodxz profile deviates by less than 60µm, as shown in
Figure 6.5

6.1.4 Two domain–adaptive refinement

The purpose of this demonstrative case study is to apply two numerical techniques simulta-
neously during a SPIF process simulation of a 45◦ pyramidal shape of 17 mm deep. These
numerical techniques are the efficient implicit time integration scheme and the adaptive
refinement. The adaptive refinement scheme uses the h-adaptivity method and introduces
one level of refinement. The efficient implicit method splitsthe FE model into two domains
that apply an iterative and an incremental update strategy.

The numerical blank of a 100× 100× 1.2 mm3 is discretized with 3200 discrete shear
triangular shell elements. It is a reference model. Each element has in total 21 integration
points. A simple material model is used (Section 2.2.1), representative for a mild steel.
The standard implicit time integration scheme is used to simulate the incremental forming
of the reference blank into a 45◦ pyramidal shape by an analytical spherical tool of 10 mm
radius. The simulation finishes when the tool reaches the endof loop 34, the first and the
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Figure 6.4: The achievedxz profile by the standard simulation using different contact models
(top). The error in predicting thexz profile by the two domain method using aug-
mented model (bottom left) and penalty model (bottom right).

final loop description is shown in Figure 5.6. Two implicit simulations are performed using
an intermediate coarse initial mesh of 800 triangular shellelements. In the first simulation,
the h-adaptivity introduces one level of refinement only (Refinement) while in the second
simulation the adaptive refinement is combined with the two domain method (two domain–
refinement). Because of adaptive refinement, the number of elements is expected to vary
between 800 and 3200 within these simulations.

The overall performance of the simulations is summarized inTable 6.6. The reference
simulation performs 8052 load increments in 10.54 hr. On average, the adaptive refinement
method accelerates the standard implicit simulation by a factor of two, this agrees with
expectation as shown in Section 5.2.1. The two domain methodaccelerates the adaptive
refinement simulation by a factor of 1.8 resulting in an overall acceleration of the stan-
dard simulation by a factor of 3.6, performing almost the same number of increments. A
high SPEED is achieved in the initial stage (the first thousand increments), the refinement
simulation has a SPEED of 4 while the two domain–refinement achieves a SPEED of 8.
The achieved SPEED is reduced during the simulations, the evolution of SPEED for both
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Figure 6.5: The achievedxz profile for the fine mesh simulation (left) and the predicted error
(right).

Table 6.6: The simulations performance.

Reference Refinement Two domain–refinement

Nr. of increments 8052 8145 8169

Nr. of elements 3200 800-2032 800-2048

Nr. of Nodes 1681 441-1057 441-1065

CPU time (hr) 10.54 5.27 2.92

SPEED 1.0 2.0 3.61

simulations is shown in Figure 6.6. The main cause of reducing the achieved SPEED is the
increase of the number of elements. Because of the h-adaptivity method, a gradual growth
of the FE model size is observed as shown in Figure 6.7. In thiscase study, the advantage of
using the intermediate coarse mesh has a large impact on SPEED in the initial stage of the
simulation. The current mesh is developed initially from anintermediate coarse mesh and its
growth is limited by one level of refinement resulting in the fine mesh used in the reference
simulation. The use of coarsening will not enhance the achieved SPEED significantly and
it will not maintain the accuracy as discussed in Section 5.2.1.

The new elements are mainly added in the vicinity of the tool resulting in an increase
of the iterative ratio as shown in Figure 6.8. The increase ofthe iterative ratio results in
reducing the achieved SPEED of the two domain method as shownin the same figure. The
refinement reduces the effectiveness of the two domain method. Here, SPEED is defined
as the ratio of the required computing time by the refinement simulation to the computing
time of the two domain–refinement simulation.
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Figure 6.6: The evolution of SPEED during the adaptive refinement simulation and the two
domain–adaptive refinement simulation.
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Figure 6.7: The evolution of the total number of elements in the two domain–refinement simula-
tion, the refinement simulation has almost the same elementsgrowth.

In general, the results achieved by the adaptive refinement approach and the two domain–
refinement approach have a good agreement with the results achieved by the reference
simulation. Considering the stretching strain at mid-integration point (in Figure 6.9), the
maximum achieved equivalent plastic strain at the reference FE mesh is 0.487. The adaptive
refinement approach predicts almost the same maximum equivalent plastic (0.496) it is
overestimated by 1.8 % while it is overestimated by 1.2 % using the two domain–refinement
approach which predicts a maximum plastic strain of 0.493. The observed less smooth
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Figure 6.8: The revolution of the iterative ratio in the two domain–refinement simulation (left).

The achieved SPEED of the two domain–refinement method accelerating the refine-
ment simulation.

distribution of the result is introduced by the adaptive refinement approach. The two domain
method nicely predicts even the less smooth distribution ofthe plastic strain.

6.2 Continuous bending under tension

The continuous bending under tension process is a multi-point incremental forming process.
The first stage of the process and the setup description are explained in Section 3.3.2. The
first stage introduces bending by the vertical movement of central roll near one end of the
strip. Subsequently, the roll set moves to the opposite end.During this stage, both edges of
the strip are fully clamped. Now, the roll set is located at the cyclic starting point position.
The process proceeds by moving the far edge of the strip away to apply a tensile load. The
tensile load is combined with continuous cyclic movement ofthe roll set. A full cycle of the
roll set contains a forward movement towards the moving strip edge and backward towards
the starting point as shown in Figure 6.10.

The initial bending is introduced by the vertical central roll displacement of 3.3 mm. The
roll set longitudinal span movement is 100 mm traveled at 66.7 mm/s. The moving edge
velocity is 2.5 mm/s. With these settings, the standard implicit simulation isperformed
using a penalty contact model. A two domain simulation is performed to accelerate the
standard implicit simulation. The iterative and the incremental super elements are classified
using a tool indicator (Section 3.3.2)

The predicted vertical force on the central roll by both simulations is shown in Fig-
ure 6.11. The process performs 16 cycles, an extensive analysis of the process is presented
in the following chapter. The vertical force predicted by the two domain has a very good
agreement with the force predicted by the standard simulation. The deviation is limited
to a few Newtons. At the change of the roll set direction, the error is limited to less than
20 N which is observed for half of the process time. Afterwards, the deformation becomes
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Figure 6.9: The achieved equivalent plastic strain at the mid-integration point by the reference (top
left), adaptive refinement (top right) and two domain–refinement approach (bottom).

Figure 6.10: Continuous bending under tension process description.

large resulting in elongated elements (almost double the initial length) and that introduces
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Figure 6.11: The vertical force on the central roll during CBT test (left) and the predicted error
(right).

Table 6.7: The continuous bending under tension precess simulations performance.

Standard Two domain

CPU time (hr) 59.51 33.02

SPEED 1.0 1.8

slight oscillations in the force measurement and, of course, an increase of the error even
within the cycle. The CPU time performance is summarized in Table 6.7. The standard
implicit simulation finishes the 16 cycles in 59.51 hr. The two domain method accelerates
the simulation by a factor of 1.8 and finishes in 33.02 hr.

6.3 Summary and conclusions

Two real-life applications of incremental forming are demonstrated. The first application
is the production of a 20 mm deep 45◦ pyramidal shape by SPIF process, in Section 6.1.
For a particular setting, the two domain method acceleratesone month simulation by a
factor of 3.31. It finishes the simulation in almost 9 days with an error ofless than 60µm.
The achieved speeding factor for a simulation is influenced by the used contact model
and the increment size because both settings influence the required number of iterations to
converge. The two domain method combined with the adaptive refinement accelerates the
standard implicit simulation of 3200 shell elements by a factor of 3.6. Actually, the adaptive
refinement accelerates the standard implicit simulation bya factor of 2 and the two domain
method accelerates the adaptive refinement simulation by a factor of 1.8.

In Section 6.2, the two domain method successfully accelerates the standard implicit
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simulation of the continuous bending under tension test by afactor 1.8. A very good agree-
ment of the predicted central roll force is achieved by the two domain method simulation
compared to the achieved prediction of the force by the standard simulation. A numeri-
cal investigation of the continuous bending under tension process is presented in the next
chapter.





7. Continuous bending under tension

In this chapter the continuous bending under tension test isanalyzed bynumerical simulation.
In particular the ability of achieving high strains by combined stretching and bending is
considered. This deformation mode has similarities with the deformation that takes place in
incremental sheet forming (ISF) and may explain the high strains that are observed there. A
state-of-art for continuous bending under tension processis introduced in Section 7.1. The
experimental setup and the 3D FE model are introduced in Section 7.2. Within this section,
the sensitivity of the numerical model to mesh discretization is studied. Also, different
material models are investigated. An isotropic hardening material model and two mixed
isotropic/kinematic hardening material models are used. With satisfactory results achieved
by the isotropic hardening model, a further analysis on the cyclic force–displacement curve
of the CBT process is presented in Section 7.3. This analysisfocuses on the pattern of
the cycle that consists of two different parts and the evolution of the cycle during the
process. In Section 7.4, a numerical stability analysis forinhomogeneous stress distribution
is introduced. The model describes the importance of bending in stabilizing the deformation
under tension. According to that criterion, a stable deformation can be achieved as long as
it requires an increase of the force.

7.1 Introduction

For the last decade much research has been carried out investigating the mystery of incre-
mental sheet forming (ISF), being that the achieved strainsare often far above the forming
limit curve (FLC) that is established for ordinary sheet forming. Furthermore, it has a
relatively simple and cheap setup. The ISF process is limited to small volume production
because of the long running time of the process. ISF is a displacement controlled process
performed on a CNC machine. A clamped blank is deformed by themovement of the tool
that follows a prescribed tool path (Matsubara, 1994). The process was described in a patent
by Leszak (1967) without the use of a CNC machine. An extensive overview of the process
is given by Jeswietet al. (2005); Bambach (2008); Emmenset al. (2010).

Several mechanisms have been proposed in the literature to explain the increased forma-
bility that is achieved by ISF. These mechanisms are summarized and discussed in full detail
in a recent review paper by Emmens and van den Boogaard (2009b). The early assumption
for stabilization was based on governing through-thickness shear. This mechanism could
not be confirmed by recent experiments performed using single point incremental forming
(SPIF) and two point incremental forming (TPIF). Instead, stretching combined with shear
in the plane perpendicular to the tool direction and shear inthe plane parallel to the tool
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direction is proposed in the same framework (Jackson and Allwood, 2009).
Another proposed mechanism is bending under tension. It hasbeen proposed based on

3-dimensional FE analysis (Sawadaet al., 2001). The deformation in ISF is subjected to
bending and unbending with stretching along the meridian line and shear in the circumferen-
tial direction. Also, based on experimental works on water jet forming, a localised bending
and unbending in a global stretching of the sheet is assumed to stabilize the deformation to
high strain (Emmens, 2006). Very recently, a simplified continuous bending under tension
(CBT) setup has been proposed to investigate the bending under tension in ISF by Emmens
and van den Boogaard (2009a). In the early 70s, the basic ideaof CBT was proposed to
investigate the material properties at high level of straining (Benedyket al., 1971). It is
shown experimentally that high levels of strain are obtained for various materials. In indus-
try, the CBT process is implemented in the tension leveling process, which is used mainly
to improve the flatness of sheets and to gain a small permanentelongation. The tension
leveling process has been experimentally and numerically studied in (Mols, 1972; Yoshida
and Urabe, 1999). A simple 2-dimensional FE model of the proposed CBT process has been
used to study ISF by Hadoushet al. (2007). Indeed, the 2-dimensional FE model predicts
a stable deformation up to a high level of strain.

The CBT process is, by itself, an incremental forming process. The advantages of
investigating bending under tension in the CBT setup ratherthan on a typical ISF process
are the simple stress field around the rolls and the absence ofdoubly curved shapes. The
essentially 3-dimensional complex bending in ISF is reduced by the CBT setup to a merely
2-dimensional case. A tensile test can be carried out immediately after CBT testing. This
gives the possibility to investigate the actual stress state and the achieved hardening directly,
without unloading or further machining of the product.

7.2 Numerical model and process description

The experimental description of the CBT process has been explained in detail in Emmens
and van den Boogaard (2009a). Within this section, some of the experimental descriptions
will be mentioned for their relations to the numerical model. The CBT setup is shown in
Figure 7.1. The roll set is modeled by 3 analytical, frictionless, cylinders of 15 mm diameter.
In longitudinal direction, the rolls are separated from each other by 17.5 mm. The roll set
can travel in the longitudinal direction only. First, the central roll is placed such as to fit
the specimen in between the rolls without deforming it. Thenthe central roll can move in
thickness direction to introduce bending. A two dimensional schematic of the FE model is
shown in Figure 6.10. The bending in the specimen is introduced by the movement of the
central roll downwards. The movement of the roll set in longitudinal direction introduces
the bending in a cyclic manner.

The used specimen in the CBT process is schematically shown in Figure 7.2. Through
the length of the specimen, the specimen has uniform thickness and piecewise uniform
width. The middle of the specimen has the smallest width. Thecyclic bending is performed
only in the middle part of the specimen. Experimentally, it is observed that the part that
experiences the combined tension and bending deforms as shown in Figure 7.3. Because of
the geometry and load description, the plastic deformationof the wider parts is neglected
for mild steel. The wider part of the strip can be assumed to experience rigid body motion,



7.2 Numerical model and process description 95

Figure 7.1: CBT setup (Emmens and van den Boogaard, 2009a).

Figure 7.2: Schematic of the experiment specimen, dimension is in mm (the drawing is not to
scale).

compared to the large plastic deformation in the middle partof the specimen. Only the
middle part of the specimen is considered in the simulation.Because of symmetry along
the longitudinal axis, half of the middle part of the specimen is modeled. The modeled part
of the specimen is 200 mm in length and 10 mm in width. The thickness of the modeled
part of the sheet is 1 mm.

7.2.1 Mesh dependency

Three FE meshes are used to show the influence of the FE mesh density. A regular mesh
is used with 8 triangular shell elements used to discretize the 10 mm width. The triangles
are large at the longitudinal symmetry line and small at the free strip edge with an ele-
ment size ratio of 4 to 1. A uniform element length is used for longitudinal discretization.
Three longitudinal element lengths are used and classified as: coarse (1 mm), intermediate
(0.5 mm) and fine (0.25 mm). The modeled strip is imperfection-free since a nonuniform
strain distribution is presented by the bending. A nonuniform strain distribution through
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Figure 7.3: Untested and tested specimens: untested (top),tensile tested (middle) and CBT tested
(bottom). A uniform deformation is observed in the white rectangle (Emmens and
van den Boogaard, 2009a).

Figure 7.4: The used different mesh densities: coarse (left), intermediate (middle) and fine (right).
The sample models 2 mm length and 10 mm width, with the free edge on the left.

the length is introduced by the cyclic roll set movement (Hadoushet al., 2007). Samples of
the different meshes are shown in Figure 7.4.

The predicted longitudinal force at the clamped edge versusthe cross bar displacement is
shown in Figure 7.5 for the 3 different meshes. For convenience, the absolute displacement
of the cross bar will be used in this chapter keeping in mind that the cross bar travels in the
negative longitudinal direction. The different meshes predict the same pattern of the force
displacement curve with almost the same achieved value. Thedifference in the achieved
predicted force value is a result of the spatial discretization. As expected, a higher level
of oscillation is observed in the coarse mesh, see Section 6.1.1. The fine mesh simulation
finishes 15 complete cycles and fails during cycle 16. More cycles are modeled by the
coarse and the intermediate meshes. A larger element is expected to smooth the achieved
strain and that results in delaying the localization of the deformation.

7.2.2 Material models

In metal forming, a yield function8 is often used to describe the stress–strain behavior that
governs the elastic–plastic mechanical behavior. The yield function8 can be defined as

8 = σeq − σf (7.1)

whereσeq andσf are the equivalent stress and the flow stress, respectively.The flow stress
σf defines the current yield strength, it models the size of the yield surface that may expand
(hardening) or contract (softening). The equivalent stressσeq defines the shape of the yield
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Figure 7.5: The predicted force–displacement diagrams forthe entire CBT process (left) and a
zoomed-in part of the process (right).

surface in stress space. For a comprehensive overview, the books by Simo and Hughes
(2000); Belytschkoet al. (2007); Hill (1950); Zienkiewicz and Taylor (2005) are useful.

In this work, the anisotropic yield function postulated by Hill (1948), also known as
Hill’48 is used. In Hill’48, three orthogonal planes are presumed that lead to three principal
axes of anisotropy. For sheet metal, these principal axes coincide with the rolling, transverse
and thickness direction of the sheet. Hill’48 can be writtenas

φ = F(σy − σz)
2 + G(σz − σx)

2 + H (σx − σy)
2 + 2Lσ 2

yz+ 2Mσ 2
zx + 2Nσ 2

xy − x2 (7.2)

the valuex can be scaled with the orthotropy parametersF, G, H, L, M and N. Here,
the valuex is equal toσf

√
G + H . By this choice,σf equalsσx in a uniaxial tensile test in

thex-direction. For a plane stress condition, Hill’48 yield function is simplified by setting
σz = σyz = σzx = 0, and becomes

φ = (G + H )σ 2
x − 2Hσxσy + (F + H )σ 2

y + 2Nσ 2
xy − 2σ 2

f (7.3)

Isotropic hardening models a continuous expansion of the yield surface and the yield
strength is equal in tension and compression. It can be modeled by the power law

σf = σ0 + C(ε + ε0)
n (7.4)

It is a simple hardening law, the four parameters can be easily fitted to a uniaxial tensile test.
In cyclic loading, the isotropic hardening model provides poor results. At load reversal,
the material yields earlier compared to the isotropic hardening model. This phenomenon
is known as the Bauschinger effect. The kinematic hardeningmodel of Armstrong and
Frederick describes the Bauschinger effect with the use of the back stressξ

ξ̇ = λ̇
(

Ak
∂φ

∂σ
− Alξ

)

(7.5)
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Table 7.1: DC06 material parameters.

Orthotropy parameter F G H L M N

Value 0.517 0.702 1.298 3 3 3.12

isotropic isotropic/kinematic 1 isotropic/kinematic 2

σ0 (MPa) 0.0 0.0 95.0

C (MPa) 494 451.5 300.0

ε0 (-) 1.0 × 10-5 1.0 × 10-7 1.0 × 10-9

n (-) 0.248 0.248 0.340

Al (-) 0.0 474 12.25

Ak (-) 0.0 9913 766.0

whereλ̇ is the plastic multiplier1. The back stressξ stores the history of the stress path.Ak
describes the hardening rate,Al controls the contribution of the back stress in the evolution
equation of the back stress. It allows a gradual increase of the flow stress after load reversal.
Chaboche (1991) extended the kinematic hardening model andobserved accurate results
for a loading history with 10 load reversals. In (7.3),σ − ξ is used instead ofσ . The
isotropic/kinematic model describes the growth of the yield surface and the Bauschinger
effect for cyclic loading.

In the CBT process, a part of the strip is bent and unbent for each pass of the roll (3 times
for the roll set). Three parameter sets are used in this investigation to model DC06 sheet
material, the used parameter sets are listed in Table 7.1. The first set represents only isotropic
hardening according to (7.4), the other two use a combination of isotropic and kinematic
hardening according to (7.4) and (7.5). The latter two parameter sets are obtained by fitting
with a different weighting factor for the transient zone after load reversal. Two cycles are
modeled. At the end of the simulation, the element length is doubled.

The stress–strain curve for the tension–compression test is shown in Figure 7.6. A dif-
ference in the stress–strain curve is observed even for the first part of the test that introduces
monotonic tensile loading. After a load reversal, the isotropic/kinematic 1 material model
shows a non–sharp elastic/plastic transition compared to the sharp elastic/plastic transition
that is observed in the isotropic material model. The isotropic/kinematic 2 model shows
a gradual stress increase after the load reversal that provides a transient hardening effect
modeling the Bauschinger effect.

An experiment is performed with a roll speed of 66.7 mm/s and cross bar velocity of
2.5 mm/s. Bending is introduced by shifting the central roll 3.3 mm in thickness direction
and it is held at this level for the entire process. The predicted force at the clamped edge
for each material model is plotted versus the cross bar displacement in Figure 7.7. In
general, the force–displacement curves predicted by the three different material models are

1Drucker’s postulate requires that the plastic strain is perpendicular to the yield surface:ε̇p = λ̇
∂σeq
∂σ
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Figure 7.6: Stress–strain curves for the components inx-direction.

Figure 7.7: Force–displacement curves for different material models: the entire process (left) and
one cycle (right).

very similar to the experimental force–displacement curve. The different material models
predict successfully the sudden increase of the force at thestart and at the middle of the
cycle. At the second half of the cycle, the material models predict the gradual decrease of the
force at the final stage of the cycle. Astonishingly, the Bauschinger effect that is included in
the isotropic/kinematic material models shows no significant difference in the pattern of the
predicted force compared to the predicted force by the isotropic material model. However,
the isotropic/kinematic material models show earlier localization than the isotropic material
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Figure 7.8: Evolution of the cyclic force–displacement curve during the CBT process: the third
cycle (top left), the sixth cycle (top right) and the twelfthcycle (bottom).

model. This contradicts with the expectation that kinematic hardening models can stabilize
the process because of the higher slope of the stress–straincurve compared to the slope in
the isotropic material model as can be seen in Figure 7.6.

7.3 Force displacement curve

The purpose of this section is to analyze the force–displacement curve. In recent work
of Emmens and van den Boogaard (2009a), the force–displacement curve is presented for
the CBT process, three representative cycles of the force–displacement curve are plotted in
Figure 7.8. They explained some aspects of the force measurement on the CBT process.
The peaks (the sudden increase of force) were explained by the deceleration of the roll set
to change the movement direction resulting in an increased tensile force. The additional
positive/negative contribution of the down/up movement ofthe roll set was used to explain
the change in average of the force between the first and the second half of the cycle.

However, the numerical model does not include the acceleration/deceleration of the
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Figure 7.9: Different deformation history within the cyclic roll set movement. The number of the
zones defines the number of bending/unbending operations.

roll set, instead it changes the direction of the roll set immediately and the peaks are still
observed. Ignoring the acceleration/decelerationof the roll set results in predicting a smaller
span length of cycle in the FE model compared to the experimental span length of the cycle.
This explains the lag of the measured force compared to the predicted force. It is true that
the roll set has positive/negative contributions to the clamped longitudinal force but it does
not explain the evolution of the shape of the cyclic force–displacement curve during the
process.

Within the continuous bending under tension process, the bent material portions de-
form plastically. Because of the bending contribution theyrequire less tension force to
deform compared to the force required to deform the same cross section under tension only
(Marciniak and Duncan, 1992). Therefore, the rest of the strip material is loaded elastically.
Due to the geometry of the roll set (three identical rolls in arow) the strip is bent and unbent
at different levels. Three zones are defined based on the frequency of bending/unbending
as shown in Figure 7.9. In zone 1, the material is bent and unbent once for each pass of
the roll set. Similarly, the material experiences 2 sets of bending/unbending and 3 sets of
bending/unbending in zone 2 and zone 3, respectively. For simplicity, the zones are defined
from one roll center to another roll center. Zone 1 and zone 2 have span length of 17.5 mm
which equals the longitudinal distance from one roll to another. Zone 3 has the largest
length, it is equal to the span length of the cycle (here it is 100 mm) minus the distance
between the lower rolls (35 mm).

The strip is under tension during the CBT test because of the cross bar displacement.
This results in dragging the material to the left as shown in Figure 7.9. Consequently,
the material will migrate from one zone to another that has a different frequency of bend-
ing/unbending. Eventually, part of the material that experienced bending leaves the bend-
ing/unbending zones to be under tension force only as the rest of the strip. The different
zones of bending/unbending frequency and material migration through these zones are pro-
cess characteristics of the CBT test. They are the keys to explain the evolution of the shape
of the cyclic force–displacement curve.

7.3.1 Cycle

The cycle consists mainly of two peaks and two almost steady parts. The peaks are observed
at the interval when the roll set changes its travelling direction. The steady parts present the
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major part of the cycle. The first half of the cycle models the roll set travelling towards the
moving cross bar and away from the clamped edge (where the force is measured). Therefore,
the measured force on average is higher in the first half of thecycle compared to the measured
force in the second half of the cycle. With the use of an isotropic material model only as
shown in Figure 7.8, the numerical model predicts the cyclicforce–displacement curves in
very good agreement with the experimentally achieved cyclic force–displacement curves.

Steady state

The goal of this discussion is to explain the evolutionof thesteadystate parts of the cycle. The
longitudinal force–displacement cyclic pattern depends on two process characteristics: the
different bending/unbending zones and the migration of thematerial toward the moving cross
bar. These two factors result in different levels of hardeningalong the strip and consequently
thickness distribution. The hardening and the thickness distribution along the strip implicitly
influence the evolution of the cyclic force–displacement curve. To simplify the discussion,
the force–displacement curve is first explained based on thedifferent bending/unbending
zones, then the additional influences of the other factors are introduced.

Within the travelling distance of the roll set and because ofthe roll set geometry, three
different bending /unbending zones are distinguished. Thecyclic forward / backward move-
ment of the roll set shifts the active location of the plasticdeformation through these zones
assuming that only the bent material deforms plastically. An initial assumption of the cyclic
force–displacement curve is plotted in Figure 7.10. This assumed curve considers the use
of an isotropic hardening material model and the positive/negative contribution of the lon-
gitudinal force of the roll set. Also, it assumed a uniform deformation within each zone. At
the beginning of the cycle, the roll set is located in zone 1 and zone 2, the zone locations
are shown in Figure 7.9. Zone 1 and zone 2 are less hardened than zone 3 because they
are less deformed. The roll set moves toward the cross bar andgradually it deforms more
material located in zone 3, all material in zone 2 and less material in zone 1. This results
in an increase of the force until the complete shift of the roll set to zone 3. This requires
the roll set to travel 35 mm which is the length of zone 1 and zone 2. Then, a constant
force is achieved because a uniform deformation is assumed within the zone and the roll
set is completely in zone 3. The span of the cycle is 100 mm, limiting the length of the
steady force measurement to 30 mm. Then, a decrease of the force is observed as the roll
set deforms material in zone 2 and subsequent material in zone 1. At the end of the first half
of the cycle, the roll set is located in zone 1 and zone 2 near the cross bar. In the second half
of the cycle, the roll set moves backward to the clamped edge of the strip. The second half
of the cycle is assumed to be a mirror of the first half except a lower level of the constant
force part is assumed considering the negative contribution of the roll set. The following
cycle will be performed at a higher level of force compared tothe force level of the current
cycle because of hardening.

Up to this point, each half of the cycle consists of an increase of the force then a constant
level followed by a decrease of the force. The numerically achieved results of the longitu-
dinal force for the different cyclic patterns are plotted versus the absolute displacement of
roll set in Figure 7.11. The observed pattern of the third cycle and the second half of the
sixth cycle have a very good agreement with the assumed cyclic pattern based on different
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Figure 7.10: Assumed force–displacement curve for isotropic hardening material. For conve-
nience, the absolute roll set displacement is used, the rollset travels 100 mm toward
the moving cross bar (negative direction) in the first half ofthe cycle and 100 mm
backward to the clamped edge in the second half of the cycle (positive direction).

bending/unbending zones. Still, some aspects of cyclic evolution are not explained, spe-
cially the pattern of the first half of the sixth cycle dominated by a slight positive slope, the
concave-like pattern observed in the twelfth cycle and the peaks that appear after a travelling
direction change of the roll set.

Because of the moving cross bar, the material is dragged toward the cross bar. The
material migrates from one zone to another in one direction toward the cross bar. To
emphasize the influence of material migration, the history of several nodes through the
length of the strip is shown in Figure 7.12. Clearly, node 1 hardly moves (less than 1 mm)
for 12 cycles. This means that material in zone 1 near the clamped edge has the lowest
cyclic history and consequently is less hardened. Significantly, material migrates from zone
3 and gradually fills zone 2 and subsequently zone 1 near the cross bar. For the first half of
the sixth cycle, zone 2 and zone 1 are completely filled with a material originally deformed
in zone 3. This explains the almost constant level of force (aslight positive slope of the
force is observed). Of course, the sixth cycle finishes with adecreasing force because the
roll set goes back to zone 2 and zone 1 near the clamped edge.

Performing more cycles, material keeps migrating. Eventually, some of the material
that is originally deformed in zone 3 leaves the bending/unbending zones. The material
(between node 3 and node 5) has the highest level of hardeningand consequently has
the most significant reduction of thickness along the strip.This material, because of the
significant reduction of the cross section, requires relatively less force compared to the force
required to deform materials in zone 2 and zone 1 resulting inthe concave-like pattern of the
twelfth cycle. The hardening is a material property. Using another material with different
work hardening rate influences the development rate (fast/slow) of the cyclic pattern from
one pattern to another, but it will never change the process characteristics.
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Figure 7.11: Cyclic force evolution versus the absolute displacement of the roll set.

Figure 7.12: Migration of material from one zone to another toward the moving edge: initial
location (top) then at the beginning of the third cycle, the sixth cycle and the twelfth
cycle(bottom).

Peak

As mentioned earlier, the peak in the force during the CBT process is a sudden increase
of the longitudinal force. It is observered when the roll setchanges its travelling direction
at the beginning of the first half and the second half of the cycle. It has been suggested
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Figure 7.13: The local geometry of the strip in the FEM model (solid line) just before reversing
the travelling direction of the roll set. The dotted line is amirror image of the current
geometry of the strip.

previously (Emmens and van den Boogaard, 2009a) that the peak is a result of the accelera-
tion/deceleration of the roll set in the experiment. But in the FE model, the roll set changes
its travelling direction instantaneously at the same speed. Even then, the peak is observed,
it lasts for a significant interval of the roll set travellingdistance and the response is not
instantaneous. Up to now, the different zones of bending/unbending frequency and material
migration give no direct explanation of the peak. In this section, further analysis is carried
out to explain the peak.

During the steady state part of the cycle, the active plasticzone is shifted with the
travelling roll set. Actually the travelling roll set shifts the local curvature and as a result
the active plastic zone is shifted. During the peak, an increase of the longitudinal force
(far from the assumed force expectation) is observed. This raises the following question:
does reversing the travelling direction of the roll set result in a sudden change in the local
curvature? The local geometry of the strip in the FEM model just before reversing the roll
set travelling direction is plotted in Figure 7.13. This is the current geometry at the end of
the fourth cycle, it is used to investigate the peak at the beginning of the fifth cycle. The
current travelling direction of the roll set is toward the clamped edge (from left to right)
and it is going to reverse. A mirror image of the current geometry clarifies that the roll set
can travel relatively easier to the left than to the right. Furthermore, reversing the travelling
direction of the roll set (moving to the left) will not resultin a sudden and significant change
in the geometry of the strip. This geometry will last for an interval of time.

With the movement of the cross bar, the strip must be elongated, but a balance has been
reached recently between the tensile force and the bending moment (the current curvature)
and the roll set needs time to change the curvatureof the strip after the reversal. Therefore, the
force is increased to elongate the strip compensating the cross bar incremental displacement.
As a result of the increased tension force the strip plastically deforms in the region of the
roll set under bending and tension and partially under tension away from the roll set. In
Figure 7.14, the plastic strain per increment is plotted fortwo positions of the roll set, one
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Figure 7.14: A comparison of the plastic increment for two positions of the roll set, one during
the steady part (dotted lines) and one just after the reversal of the travelling direction
(dashed line).

during the steady state (dotted lines) and one just after thetravelling direction reversal of
the roll set (dashed line). Because of the deformation, the current length of the strip at the
beginning of the fifth cycle is 230 mm. It can be clearly seen that during the steady state
high plastic strain increments appear, but only near the position of the rolls. Just after the
reversal of the travelling direction, the peak plastic strain increments are much lower but
they extend over a larger region.

The increase of the longitudinal force when the roll set reverses its travelling direction
is a result of a continuous movement of the cross bar. So, whatwill happen if the cross bar
does not move at this stage? To understand the influence of thecontinuous movement of
the cross bar during the reversal of the roll set direction, astudy on the force measurement
is carried out on the first peak of the fifth cycle. The study compares the longitudinal force
during the reversal of the roll set direction with and without the movement of the cross
bar. The comparison of the forces is shown in Figure 7.15. Without the movement of the
cross bar, the roll set travels for 5 mm at almost constant force (a slight drop of the force
is observed at the very beginning) with no significant changein geometry. Then, the roll
set further movement corrects the geometry and the bending/unbending starts producing
significant plastic deformation (the strip is elongated) which reduces the tension in the strip.
This supports the claim that the peak results from the deformation of the strip by increasing
the tension force (caused by the continuous movement of the cross bar) with no significant
change in strip curvature.



7.4 Stability analysis 107

0 5 10 15
1500

2000

2500

3000

3500

4000

Roll set travelling distance (mm)

C
la

m
pe

d 
lo

ng
itu

di
na

l f
or

ce
 (

N
)

Reversing with tension

Reversing without tension

Figure 7.15: Longitudinal force evolution for the first partof the fifth cycle with and without cross
bar movement.

7.4 Stability analysis

In general for bending under tension, the longitudinal stressσx is inhomogeneous through
thickness because of bending. This is the crucial difference with the standard stability
analysis of an ordinary tensile test. Depending on the tensile load level, the inhomogeneous
stress distributionσx has a positive part and it can have a negative part. Through the width,
the strip deforms approximately in a plane strain conditionat the symmetry line along the
length and in uniaxial condition at the free edge. Because ofinhomogeneity, the instability
criterion for bending under tension cannot be derived analytically. Therefore, it is derived
numerically for the CBT process.

In the steady state part of the cycle of the CBT process, the material portions that
experience combined bending and tension show local plasticdeformation, it is located in
the vicinity of the rolls. A cross section, related to such material portions, is deformed from
its former geometry to the current geometry under simultaneous bending and tension. In
this work, a study is carried out investigating whether additional tension (perturbation) to
the current equilibrium between bending and tension for a cross section will result in a stable
or instable deformation. A stable increase of the local lengthŴ requires an increase of the
longitudinal force. This means that the rate change of the longitudinal force with respect to
the local length2 has to be positive

dFx

dŴ
> 0 (7.6)

The tensile force is obtained by integrating the longitudinal stressσx over a cross section

Fx =
∫

A
σxdA = σ x A (7.7)

2In this section,x represents a coordinate along the curved strip in longitudinal direction
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whereσ x and A are the average stress through a cross section and the cross sectional
area, respectively. The average stress is used for convenience in the following derivation.
Substituting (7.7) into (7.6) results in

A
dσ x

dŴ
+ σ x

dA

dŴ
> 0 (7.8)

Neglecting the elastic deformation and considering constant volume during deformation,
the initial geometry deforms to

V = A0Ŵ0 = AŴ (7.9)

the infinitesimal length strain increment of the mid-plane can be written as

dεx = dŴ/Ŵ0 = −dA/A (7.10)

with the use of (7.10) and rearranging terms in (7.8), the stability condition (7.6) can be
written as

dσ x

dεx
> σ x (7.11)

where dσ x/dεx is the average tangent stiffness.
A stable increase of the local lengthŴ requires that the average tangent stiffness dσx/dεx

must be larger than the average stressσ x. The perturbation (increase of force) shifts some
of the fibers from compression to tension resulting in increasing the average stressσ x. The
most important fact is that the average tangent stiffness dσ x/dεx is much higher than the
average stressσ x as long as there are still elastic fibers. For a strain hardening material, the
average tangent stiffness can be integrated over the cross section that has a thicknesst per
unit width as

t
dσ x

dεx
=

∫ t/2

e1

dσx

dεx
dz +

∫ e1

e2

dσx

dεx
dz+

∫ e2

−t/2

dσx

dεx
dz (7.12)

wheree1 ande2 define the boundaries of the elastic zone through the thickness. The first and
the third term in (7.12) present the contribution of the plastically loaded fibers in tension and
compression in the average tangent stiffness, respectively, while the second term presents
the elastically loaded contribution in the average tangentstiffness. In the limit of a rigid
perfect plastic material model, the average tangent stiffness dσ x/dεx still has a high value
because the second term in (7.12) is integrated over zero thickness with infinite stiffness.
In the initial work of Hadoushet al. (2007), the compressive stress has been proposed to
stabilize the deformation in the CBT test but it was not quantified while in Emmens and
van den Boogaard (2009a) it has been quantified using a rigid perfect plastic material model
ignoring the thickness change, resulting in a zero right-hand side in (7.11). Equation (7.11)
includes the thickness change and presents a general criterion for stability in the CBT test
and equally well in the tensile test.

To validate the stability hypothesis in the FEM analysis of the CBT process, the history
of the failed element is tracked. For a big picture, the clamped longitudinal force for the
last cycles is plotted in Figure 7.16, the stresses are plotted in Figure 7.17 and an elastic
indicator is plotted in Figure 7.18. The clamped longitudinal force clearly shows that
unstable deformation governs cycle 17 and it starts at the end of cycle 16 when the force
drops instead of increasing like the end of cycle 15. For the same interval,σx for the lower
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Figure 7.16: Force–displacement curve of the last four cycles for CBT process using the fine mesh.

Figure 7.17: The evolution ofσx through thickness for the failed element at the symmetry line.

integration point (first), middle (fourth) and the upper (seventh) are all in tension.σx varies
for the rest of the integration points between the upper stress and the lower stress, they are
not plotted to keep the figure clear. The middle point stress is always in tension and the
upper stress and the lower stress vary between compression and tension during the pass of
the roll set. When the roll set is away, the upper point stressσx is in compression andσx at
the lower point is in tension.

At the beginning and at the end of cycle 15,σx for the lower and the upper integration
points are in tension. Now, an elastic indicator is used to check whether the average tangent
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Figure 7.18: The evolution of the elastic indicator for the failed element at the symmetry line.

stiffness has a high or a low value. Each integration point isweighted by one if it is
elastically deforming and by zero if it is plastically deforming. The elastic indicator for one
column of integration points in thickness is the sum of the weights. Using seven integration
points through the thickness, a column of integration points is fully elastic if the elastic
indicator equals 7 and fully plastic if the elastic indicator equals 0. If the elastic indicator
varies between 1 and 6, it deforms in a mixed combination of elastic/plastic deformation.
The elastic indicator shows that for a small interval in bothcycles 14 and 15 a full plastic
deformation through the thickness is observed. With the help of the stress history, it becomes
clear that within these intervalsσx for all integration points is in tension. Cycle 13 is the last
stable cycle based on the elastic indicator and the compressive stress, the evolution of the
stresses and the elastic indicator for this cycle are plotted in Figure 7.19. Now, the question
is why the cross bar incremental displacement did not localize in the failed element during
these intervals or in other words why the force–displacement curve does look stable for
cycle 14 and 15?

The presented results for compressive stress and elastic indicator concern only one
column of integration points related to one integration point in-plane and as it was shown it
violates the stability hypothesis. The structural response for a cross section is the sum of the
response of many integration points in the considered crosssection. The structural response
for a cross section is unstable when the entire cross sectionis plastically deforming under
tension. The presented results are for the first integrationpoint in-plane that violates the
hypothesis and it informs us that the failure of the cross section will be in the followingcycles.
For defect-free final products, this is important information that recommends stopping the
process at the end of cycle 13. Unfortunately, the predictedstability is mesh dependent,
for instance further stable cycles are performed using coarser mesh. Using the intermediate
mesh discretization (shown in Figure 7.4), cycle 15 is performed without violation of the
stability hypothesis for the weakest integration point. The numerical analysis is used here
to investigate the underlying mechanisms of stability in the CBT process, not to predict
the actual maximum achievable strain. Both mesh descriptions show that the criterion is
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Figure 7.19: The evolution of theσx through thickness (left) and elastic indicator (right) forthe

failed element at the symmetry line during cycle 13.

violated at the first peak of the cycle, an increase of tensileforce is observed during the peak.
This is validated by the experimental observation that the strip mostly fails at the beginning
of the cycle.

7.5 Summary and conclusions

The continuous bending under tension (CBT) process is an incremental forming process.
The advantages of investigating bending under tension in the CBT setup rather than on a
typical ISF process are the simple stress field around the rolls and the absence of doubly
curved shapes. The essentially 3-dimensional complex bending in ISF is reduced by the
CBT setup to a merely 2-dimensional case. Using the CBT process, the ability of achieving
high strain by combined stretching and bending is investigated.

A 3-dimensional FE model is created for the central zone in the specimen that is plas-
tically deforming. The model is discretized by triangular shell elements based on dis-
crete Kirchhoff theory. Three different meshes are investigated: coarse, intermediate and
fine. One dimensional refinement is considered for the element size in the longitudinal
direction. The used different meshes show no significant difference in predicting the force–
displacement curve of the process during the stable deformation. A higher level of numerical
noise is observed in the predicted force displacement curveusing the coarse mesh compared
to the predicted force–displacement curve achieved by the fine mesh. Early prediction of
specimen failure is observed using the fine mesh discretization as presented in Section 7.2.1.

In Section 7.2.2, three different material models are used to model the CBT process.
These models are one isotropic hardening model and two isotropic/kinematic models. De-
spite the significant difference between these models in predicting the stress–strain curve
after load reversal, only a slight difference between the models is observed in predict-
ing the force–displacement curve. The force–displacementcurve achieved by a simple
isotropic hardening model has a very good agreement with theexperimentally measured
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force–displacement curve. A major difference between the material models is observed in
predicting the failure of the specimen.

A further analysis of the force–displacement curve for the CBT process is described
in Section 7.3 based on an isotropic material model. Focusing on the process description,
the cyclic force–displacement curve consists of two parts:a steady part and a transient
part (peak). The steady part of the cycle models the deformation of the strip governed by
significant curvature change of the strip because of bending. The peak results from the
deformation of the strip by increasing the tension force with no significant change in strip
curvature. The peak is observed twice during the cycle afterreversing the traveling direction
of the roll set. During the process, the cycle pattern develops. This development is a result
of several factors. The main factors are: different zone of bending/unbending frequency and
material migration through these zones. These factors produce different levels of hardening
through the length of the strip and consequently a thicknessdistribution. The hardening and
thickness distributions implicitly influence the development of the cycle pattern.

A numerical stability criterion is derived for inhomogeneousstress distributions through
the cross sectional area in Section 7.4. The model describesthe importance of bending in
stabilizing the deformation under tension. A stable deformation can be achieved as long
as it requires an increase of the force. Irrespective of plastic hardening, a relatively large
change in the force occurs if a part of the cross section is still elastic, or for a rigid plastic
model, if a part is still in compression.



8. Conclusions and Recommendations

In this thesis, an efficient implicit method is introduced toaccelerate the standard implicit
FEM simulation of single point incremental forming (SPIF).The method is explained in
several chapters focusing on the basic concept of the method, implementation, performance
and its extendability. Additionally, a fundamental study on the mechanics of a bending
dominated incremental sheet forming process is presented.

Basic concept

A study on the evolution of nonlinearity during the calculation of SPIF by an implicit time
integration scheme concludes that the standard use of the scheme is inefficient. A small part
of the system of equations experiences a strong nonlinearity (a combination of geometrical
and material nonlinearity) and requires a fully nonlinear update procedure. The rest of
the equations, a large part, experiences only weak geometrical nonlinearity which does not
require the expensive nonlinear iterative procedure.

An efficient implicit time integration scheme is introducedbased on a mixed update
procedure. Within an increment, the strong nonlinearity has a full nonlinear update treat-
ment. The weak nonlinearity has a pseudo-linear update treatment and a nonlinear update
is applied only at the beginning of the increment to include the previous nonlinear history.
After that, the predictor is reused and the corrector is linearly updated. It is demonstrated by
several case studies (with an acceptable margin of errors) that the efficient implicit method
is as accurate as the standard implicit method and accelerates the standard implicit method
by a factor of 2−3. The speeding up is a result of the relative cheapness of thepseudo-linear
treatment compared to a full nonlinear treatment of a large part of the model.

Optionally, the pseudo-linear treatment can be applied fora group of increments, which
increase the achieved speeding factor. This gives the possibility to divide the FE model
into three domains. The first domain has an iterative update treatment and the pseudo-
linear domains that use the incrementally and the multi-incrementally update treatment. In
the penetration test, it is observed that the achieved speeding factor of the three domain
method is 20% higher than the achieved speeding factor of thetwo domain method. A
better performance of the three domain method is expected for a larger blank.

Implementation

The standard implicit scheme can be easily adapted to include the efficient implicit method.
The use of super elements facilitates the partitioning of a FE model into different domains
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with adapted update frequencies. Because of the localized plastic deformation in SPIF,
a strong nonlinearity is observed in the vicinity of the toolthat travels following a tool
path, it is a small traveling plastic zone within a large elastically deforming environment.
In order to define a proper distribution of the domains, several indicators are developed
to generically classify the super elements. These indicators are the current tool location,
plastic deformation in the previous load increment and the shape change in the previous
load increment. The tool indicator uses a search radius to classify the domains, it requires
experience to use (rule of thumb). The plastic indicator is used to shift incrementally updated
super elements into the iterative update treatment. It enhances the prediction of the assumed
plastic zone. The geometrical indicator is dedicated to follow the shape change of the multi-
incremental super element, if it is too large, the super element is re-classified to incremental
update treatment.

Performance

The speed factor (SPEED) measures the efficiency of the superelement based efficient
implicit approach in accelerating the standard implicit simulation of localised deformation
processes. SPEED is defined as the CPU time cost of one calculation increment of a
standard algorithm compared to the cost of one increment of the efficient implicit time
integration procedure. SPEED is influenced by several factors. These factors are the number
of performed iterations, the combination of the different update strategy ratios, the used
update strategies and the cost of the major parts of the Newton iteration (BUILD, UPDATE
and SOLVE). The major parts ratio of a Newton iteration depends on the material model
and the element type.

An analytical formula for the two domain method made of iteratively and incrementally
updated super elements is developed. It shows that SPEED is enhanced by reducing either
the SOLVE ratio or the iterative ratio (the ratio of iteratively updated super elements to the
total number of super elements). Also, SPEED performs better with a larger number of
iterations or simple material. A simplified upper limit of SPEED is found to be inversely
proportional to the SOLVE ratio and the iterative ratio. Theoretically, the SPEED can go
to infinity at negligible SOLVE ratio combined with zero iterative ratio. The analytical
formula is extended to include the influence of the multi-incrementally updated super ele-
ments on the achieved SPEED. It is concluded that the three domain method accelerates the
implicit method more than the two domain method for the same number of increments. The
performance of the three domain algorithm has a similar response as the two domain algo-
rithm regarding the iterative ratio and the SOLVE ratio. Theanalytical formula is validated
and it can predict in advance the expected SPEED of an implicit simulation for localised
deformation.

The task of the efficient implicit method for incremental forming is to control the update
frequency of different domains. The size of the FE model has adirect impact on the partial
cost of the solver and consequently on the performance of themethod. The size of the
system of equations can be reduced by including static condensation for the internal degree
of freedoms of the pseudo-linear super elements. A demonstrative case study showed
that the static condensation does not reduce the solver costenough to compensate the
cost of condensing the pseudo-linear element, resulting ina lower performance of SPEED
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compared to the achieved SPEED of the non-condensed approach. It is worth investigating
the increase of condensation cost for large super element size that may be caused by the
matrix multiplications or intricacies of the applied solver.

The size of the FE model can be kept as small as possible by adaptive remeshing. A study
on adaptive remeshing concludes that intensive remeshing (refining and coarsening) results
in less accurate results while refining only maintains the accuracy compared to the reference
(initially fine) FE model and it accelerates the reference simulation by the same factor as the
remeshing method. It is two times faster than the reference model. The efficient modelling
(adaptive refinement) combined with the efficient use of the implicit time integration scheme
(two domain) accelerates the standard implicit simulationfor a small academic case study of
the SPIF process by a factor of 3.6. Adaptive refinement accelerates the standard simulation
twice and the two domain method accelerates the adaptive refinement simulation by a factor
of 1.8. This implementation was tested on a single processer. Forindustrial application, it is
recommended to use parallel computing in combination with the efficient implicit method
and the adaptive refinement method.

Process mechanics

The continuous bending under tension (CBT) process is an incremental sheet forming pro-
cess. The deformation mode is similar to the deformation that takes place in incremental
sheet forming. Using the CBT process, it is shown that a stable high strain can be achieved
by combined stretching and bending.

A 3-dimensional FE model is created, it is discretized by triangular shell elements based
on discrete Kirchhoff theory. Three different meshes are investigated: coarse, intermedi-
ate and fine. The used different meshes show no significant difference in predicting the
force–displacement curve of the process during the stable deformation. Early prediction of
specimen failure is observed using the fine mesh discretization.

Three different material models are used: one isotropic hardening model and two
isotropic/kinematic models. Despite the significant difference between these models in
predicting the stress–strain curve after load reversal, only a slight difference between the
models is observed in predicting the force–displacement curve in the CBT process. A major
difference between the material models is observed in predicting the failure of the specimen.
Combined with mesh dependency, it is concluded that the FE model cannot predict failure
correctly.

A further analysis of the force–displacement curve for the CBT process is described
based on an isotropic hardening material model. Focusing onthe process description, the
cyclic force–displacement curve consists of two parts: a steady part and a transient part
(peak). The steady part of the cycle represents the deformation of the strip governed by
significant curvature change of the strip because of bending. The peak results from the
deformation of the strip by increasing the tension force with no significant change in strip
curvature. The peak is observed after reversing the traveling direction of the roll set. During
the process, the cycle pattern develops. This development is a result of two process factors:
different zones of bending/unbending frequency and material migration through these zones.
These main factors produce different levels of hardening and thickness through the length
of the strip influencing implicitly the development of the cycle pattern.
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A numerical stability criterion is derived for inhomogeneous stress distribution through
the cross sectional area. The deformation is stable as long as a local extension requires
an increase of the force. The model describes the importanceof bending in stabilizing the
deformation. It creates a compressive stress and elastically loaded fibers. The shift of a
fiber from compression to tension increases the average stress. The presence of elastically
loaded fibers maintains the average tangent stiffness at a high level as required by the stability
criterion.

Several research groups have been interested in studying the mechanism(s) that govern(s)
the SPIF process. Up to today, these mechanisms are studied individually and there is no
general agreement on a specific mechanism. All proposed mechanisms are directly or
indirectly related to bending. Very few researchers link the extended formability in SPIF
to bending itself (based on FEM simulation by Sawadaet al. (2001) and experimentally
by Emmens (2006)). In this thesis, further development is carried out following the work
of Hadoushet al. (2007) and Emmens and van den Boogaard (2009a) demonstrating how
the bending mechanism does stabilize the deformation in incremental sheet forming to high
strain.
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